|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Шестнадцатеричная система счисления
Шестнадцатеричная система счисления — это система счисления, в которой основанием является число 16. Любое целое положительное число представляется в этой системе с помощью степеней числа 16 в виде Шестнадцатеричной записью целого положительного числа является последовательность коэффициентов ап an-1... al a0 из представления (3).
Например: 31210=25610+4810+810=1·162+3·161+8·160=13816.
Для того чтобы представление числа в шестнадцатеричной системе было однозначным, значения коэффициентов при степенях числа шестнадцать должны быть целыми числами от 0 до 15. Если значение коэффициента взять равным 16, то умножение какой-то степени числа 16 на этот коэффициент дает следующую степень числа 16: 16·16n= 1·16n+1; 25·16n =(16+9) ·16n=1·16n+1+9·16n. В качестве коэффициентов для записи чисел в шестнадцатеричной системе берутся шестнадцать символов: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F. Они называются шестнадцатеричными цифрами. Десятичные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 сохраняют свои значения и в шестнадцатеричной системе: 010=016, 110=116, 910=916. Символы А, В, С, D, Е, F соответствуют десятичным числам от 10 до 15:
Рассмотрим примеры перехода от записи чисел в десятичной системе к их записи в шестнадцатеричной системе: 2710=1610+1110=1·161+1110·160=1·161+B·160=1B16. Введение шестнадцатеричных цифр А, В, С, D, Е, F является необходимым, т.к. при использовании в качестве коэффициентов в записи шестнадцатеричных чисел 10, 11,...15 появляется неоднозначность в их прочтении. Следующий пример демонстрирует, как в таком случае можно прочесть одно число тремя различными способами:
Использование шестнадцатеричных цифр приводит к однозначному прочтению чисел:
Применение шестнадцатеричной системы счисления в информатике удобно в связи с тем, что содержимое одного байта можно записать двумя шестнадцатеричными цифрами. Действительно, для записи любой шестнадцатеричной цифры достаточно четырех битов. Максимальная шестнадцатеричная цифра F=1510 имеет двоичный код 1111. Один байт - это 8 битов, которые можно разделить на две части: четыре младших бита с номерами от 0 до 3 и четыре старших бита с номерами от 4 до 7. Содержимое каждой части можно записать одной шестнадцатеричной цифрой, а содержимое байта — двумя: первая — 4 старших бита, вторая — 4 младших бита. Таким образом, любое число от 0 до 255 (содержимое 1 байта) можно записать двумя шестнадцатеричными цифрами.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |