АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнение неразрывности

Читайте также:
  1. Второй закон Ньютона как уравнение движения.
  2. Дифференциальные уравнения движения идеальной жидкости (уравнение Эйлера, вывод)
  3. Дыхание. Понятие, значение, общее уравнение. Сходства и различия с фотосинтезом.
  4. Измерительные преобразователи рода тока. Параметры переменных напряжений. Связь между ними. Аналитическое уравнение и график функции Иордана.
  5. Итоговое уравнение глюконеогенеза
  6. Количество ДЕНЕГ. уравнение ОБМЕНА фишера. проблема ДЕНЕЖНОГО ДЕФИЦИТА
  7. Модель представляет собой систему одновременных уравнений. Проверим каждое ее уравнение на идентификацию
  8. Монетаризм. Основное уравнение монетаризма
  9. Монетаризм. Основное уравнение монетаризма. Денежное правило
  10. Не включенных в уравнение
  11. Общее уравнение прямой линии
  12. Основное уравнение гидростатики

Уравнение называется уравнением неразрывности или сплошности в дифференциальной форме для произвольного движения не6сжимаемой жидкости. (4.4)

Выражение (4.4) и является уравнением неразрывности для элементарной струйки.

Для потока жидкости уравнение неразрывности будет иметь вид:

или

Т. е. отношение средних скоростей в сечениях потока обратно пропорционально отношению их площадей. Из этого следует, что при установившемся сечении с уменьшением площади сечения средняя скорость увеличивается и наоборот.

12. Уравнение Бернулли для вязкой жидкости.

уравнение Бернулли для потока реальной жидкости будет выглядеть

Для струйки идеальной жидкости уравнение Бернулли представляет собой закон сохранения механической энергии.

Для потока реальной жидкости уравнение Бернулли является уравнением баланса энергии с учетом потерь. Энергия, теряемая жидкостью на рассматриваемом участке течения, разумеется, не исчезает бесследно, превращаясь в другую форму — тепловую. Так как удельная теплоемкость жидкостей обычно велика по сравнению с потерями удельной энергии, а также ввиду того, что тепловая энергия непрерывно рассеивается, повышение температуры часто бывает практически малозаметным. Этот процесс преобразования механической энергии в тепловую является необратимым, т. е. таким, обратное течение которого (превращение тепловой энергии в механическую) невозможно

Уменьшение среднего значения полной удельной энергии жидкости вдоль потока, отнесенное к единице его длины, называется гидравлическим уклоном.

Изменение удельной потенциальной энергии жидкости, отнесенное к единице длины, называется пьезометрическим уклоном. Очевидно, что в трубе постоянного диаметра с неизменным распределением скоростей указанные уклоны одинаковы.

 


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)