|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Основное уравнение гидростатики. Умножим каждый из членов, входящих в систему (13) дифференциальных уравнений, соответственно на ; ; и просуммируем ихУмножим каждый из членов, входящих в систему (13) дифференциальных уравнений, соответственно на ; ; и просуммируем их. В результате этих действий получим:
(14) Уравнение (14) является аналитическим выражением распределения гидростатического давления жидкости. Для случая покоящейся жидкости гидростатическое давление . Следовательно, правая часть уравнения (14) представляет полный дифференциал давления . Таким образом, приведенное выше уравнение (14) приобретает следующий вид:
(15) Применим уравнение (15) к случаю абсолютного покоя жидкости, когда массовой силой является только сила тяжести. При принятом направлении координатных осей проекции этой силы будут:
; ; ,
а уравнение (15) применительно к точке получает вид:
.
После интегрирования получим:
При – давление на свободной поверхности, а – глубина погружения в жидкости точки, для которой определяется давление:
(16)
Уравнение (16) называется основным уравнением гидростатики.
Закон Паскаля «Если жидкость находится в состоянии покоя, то изменение давления на любой внешней поверхности, возникающее от действия внешних сил, передается без изменения во все точки объема, занимаемого данной жидкостью». Доказательство из уравнения (16). Абсолютное давление в т. А при размещении поршня в положении – (рис. 4):
(17)
После перемещения поршня в положение (рис. 4) давление на свободной поверхности увеличится на величину и будет равно , а абсолютное давление в т. А будет равно
, т.е. при изменении давления на свободной поверхности на , на эту же величину увеличится давление в точке А.
Рис. 4. Схема действия давления по закону Паскаля
Эта идея использована Паскалем в принципиальной концепции гидропресса.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |