АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Использование теста Глейзера для определения весовых коэффициентов при использовании взвешенного метода наименьших квадратов

Читайте также:
  1. C) кезекті аттестация
  2. C. Использование комбинации диуретиков из разных фармакологических групп
  3. Exercises for Lesson 4. There is / there are. Функция. Формы. Использование в ситуации гостиницы
  4. II. Документация как элемент метода бухгалтерского учета
  5. III Литературоведческие определения.
  6. III. ОЦЕНОЧНЫЕ СРЕДСТВА ИТОГОВОЙ ГОСУДАРСТВЕННОЙ АТТЕСТАЦИИ ДЛЯ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ
  7. III.Выпишите из абзацев 4, 5, 6 словосочетания, в которых определения выражены существительными, и переведите их на русский язык.
  8. IV. Использование экскрементов производства
  9. IХ. Примерный перечень вопросов к итоговой аттестации
  10. VI. Вставьте в текст пропущенные слова и словосочетания. Дайте им определения.
  11. VI. ЭТАП Определения лица (группы лиц) принимающих решение.
  12. What is Public Relations? What are the advantages and the disadvantages of Public Relations? Why do marketers tend to underuse it( неполноеиспользованиеих)?

 

Существует несколько тестов на обнаружение гетероскедастичности остатков модели регрессии.

Рассмотрим применение теста Глейзера на примере линейной модели парной регрессии.

Предположим, что на основе проведённого исследования зависимость между переменными можно аппроксимировать линейной моделью парной регрессии вида:

yi=β0+β1xi.

Неизвестные коэффициенты β0 и β1 линейной модели парной регрессии определяются с помощью метода наименьших квадратов. В результате мы получим оценённую модель регрессии вида:

После этого необходимо рассчитать остатки модели регрессии по формуле:

Полученные остатки модели регрессии возводятся в квадрат:

Далее для обнаружения гетероскедастичности остатков данной модели регрессии необходимо рассчитать коэффициент Спирмена между квадратами регрессионных остатков

и значениями факторной переменной xi.

Коэффициент Спирмена является аналогом парного коэффициента корреляции, однако, с его помощью можно оценить тесноту зависимости не только между количественными, но и между количественными и качественными переменными.

В качестве зависимой переменной будет выступать квадрат остатков модели регрессии

в качестве независимой переменной – значения факторной переменной xi.

Значения независимой переменной xi ранжируется и располагается по возрастанию. Ранги обозначаются как Rx. Далее проставляются ранги зависимой переменной

обозначаемые как Re.

Коэффициент Спирмена рассчитывается по формуле:

где d – ранговая разность (Rx– Re);

n – количество пар вариантов.

Далее необходимо проверить значимость вычисленного коэффициента Спирмена.

При проверке значимости коэффициента Спирмена выдвигается основная гипотеза о его незначимости:

Н0: Кспир=0.

Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:

Н1: Кспир≠0.

Проверка выдвинутых гипотез осуществляется с помощью t-критерия Стьюдента.

Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают с критическим значением t-критерия, которое определяется по таблице распределения Стьюдента.

Критическое значение t-критерия tкрит(а, n-2) определяется по таблице распределения Стьюдента, где а – уровень значимости, (n-2) – число степеней свободы, n – объём выборочной совокупности.

Наблюдаемое значение t-критерия при проверке основной гипотезы вида Н0: Кспир=0 рассчитывается по формуле:


При проверке гипотез возможны следующие ситуации.

Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|›tкрит, то основная гипотеза отвергается, и между переменной xi и остатками регрессионной модели

существует взаимосвязь, т. е. в модели присутствует гетероскедастичность.

Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|≤tкрит, то основная гипотеза принимается, и в модели парной регрессии гетероскедастичность отсутствует.

Если тест Глейзера проводился для линейной модели множественной регрессии, то при принятии основной гипотезы делается вывод о том, что гетероскедастичность не зависит от выбранной переменной xmi.

Если случайные ошибки модели регрессии подвержены гетероскедастичности (но являются неавтокоррелированными), то для оценивания неизвестных коэффициентов модели регрессии применяется взвешенный метод наименьших квадратов.

Суть взвешенного метода наименьших квадратов состоит в том, что остаткам обобщённой модели регрессии придаются определённые веса, которые равны обратным величинам соответствующих дисперсий G2(εi). Однако на практике значения дисперсий являются величинами неизвестными, поэтому для вычисления наиболее подходящих весов используется предположение о том, что они пропорциональны значениям факторных переменных xt.

Таким образом, матрица ковариаций случайных ошибок модели регрессии определяется исходя из предположения о пропорциональности величины G2(εi) значениям факторной переменной xt:

xt=γ G(εi),

где γ – ошибка высказанного предположения или некоторая поправка.

В этом случае матрица ковариаций случайных ошибок модели регрессии может быть представлена в виде:

От точности оценки матрицы ковариаций Ω случайных ошибок модели регрессии зависит удовлетворение оценок неизвестных коэффициентов, полученных доступным обобщённым или взвешенным методом наименьших квадратов, основным статистическим свойствам – несмещённости, состоятельности и эффективности.

 

 


 


1 | 2 | 3 | 4 | 5 | 6 | 7 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)