АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Оценка адекватности модели. Критерий Фишера

Читайте также:
  1. II. Оценка эффективности инвестиционного менеджмента.
  2. IV.Оценка эффективности деятельности структурного подразделения организации
  3. T - критерий Стьюдента
  4. Автокорреляция в остатках. Критерий Дарбина-Уотсона
  5. Автокорреляция в остатках. Критерий Дарбина-Уотсона
  6. Автокорреляция в остатках. Критерий Дарбина-Уотсона
  7. Автокорреляция в остатках. Критерий Дарбина-Уотсона в оценке качества уравнений, построенных по временным рядам.
  8. Автокорреляция остатков. Критерий Дарбина- Уотсона
  9. Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа).
  10. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
  11. Алгоритм проверки адекватности парной регрессионной модели.
  12. Алгоритм проверки адекватности парной регрессионной модели.

Для практического использования моделей регрессии большое значение имеет их адекватность, т.е. соответствие фактическим статистическим данным. Корреляционный и регрессионный анализ, как правило, проводится для ограниченной по объёму совокупности. Поэтому показатели регрессии и корреляции – параметры уравнения регрессии, коэффициент корреляции и коэффициент детерминации могут быть искажены действием случайных факторов. Чтобы проверить, на сколько эти показатели характерны для всей генеральной совокупности, не являются ли они результатом стечения случайных обстоятельств, необходимо проверить адекватность построенных статистических моделей.

Оценка значимости уравнения регрессии в целом производится на основе F-критерия Фишера, которому предшествует дисперсионный анализ

Схема дисперсионного анализа имеет следующий вид (n –число наблюдений, m–число параметров при переменной x):

Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину F-критерия Фишера. Фактическое значение F -критерия Фишера сравнивается стабличным значением Fтабл. (α, k1, k2) при заданном уровне значимости α и степенях свободы k1= m и k2=n-m-1. При этом, если фактическое значение F-критерия больше табличного Fфакт > Fтеор, то признается статистическая значимость уравнения в целом. Для парной линейной регрессии m=1, поэтому:

При анализе адекватности уравнения регрессии (модели) исследуемому процессу, возможны следующие варианты:1. Построенная модель на основе F-критерия Фишера в целом адекватна и все коэффициенты регрессии значимы. Такая модель может быть использована для принятия решений и осуществления прогнозов.2. Модель по F-критерию Фишера адекватна, но часть коэффициентов не значима. Модель пригодна для принятия некоторых решений, но не для прогнозов.3. Модель по F-критерию адекватна, но все коэффициенты регрессии не значимы. Модель полностью считается неадекватной. На ее основе не принимаются решения и не осуществляются прогнозы.



1 | 2 | 3 | 4 | 5 | 6 | 7 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)