АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа)

Читайте также:
  1. Cпособи опису алгоритмів
  2. I. Прокурор: понятие, положение, функции и профессиональные задачи.
  3. I. Функции окончания «-s»
  4. I. Функции окончания «-s»
  5. II. Право на фабричные рисунки и модели (прикладное искусство), на товарные знаки и фирму
  6. III Участники игры и их функции
  7. III. Методы оценки функции почек
  8. III. Полномочия и функции территориального фонда
  9. IV. Состояние дыхательной функции
  10. V. Состояние голосовой функции
  11. Абсолютные показатели оценки риска
  12. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция

Теория производственных функций была разработана американскими учёными Д. Коббом и П. Дугласом, опубликовавшими в 1928 г. опубликовали работу «Теория производства».

Эти учёные предложили одну из наиболее известных разновидностей производственных функций, носящей название функции Кобба-Дугласа.

 

Общий вид функции Кобба-Дугласа:

где а – числовой параметр производственной функции;

xi – i-тый аргумент или i-ый фактор производственной функции;

ai – показатель степени i-го аргумента.

Наиболее часто применяется двухфакторная форма функции Кобба-Дугласа f(K,L):

 

Q=A*Ka*Lβ,

где Q – объём выпущенной продукции (в стоимостном или натуральном выражении);

K – объём основного капитала или основных фондов;

L – объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней).

A,a,β – неизвестные числовые параметры производственной функции, которые подчиняются условиям:

 

1) 0≤а≤1;

2) 0≤β≤1;

3) A›0;

4) a+β=1.

На основании четвёртного условия a+β=1, функция Кобба-Дугласа может быть представлена в виде:

Q=A*Ka*L1-а.

Данная производственная функция позволяет объяснить уровень совокупного выпуска Q количествами затраченного капитала K и труда L основных факторов производства.

На двухфакторную функцию Кобба-Дугласа накладываются определённые ограничения, которые необходимо учитывать при спецификации модели:

 

1)

 

2)

 

3)

 

4)

 

5)

 

6)

Первое и второе ограничения означают, что объём выпускаемой продукции увеличивается при постоянном значении одного из факторов и росте другого фактора. Однако если один из факторов производства фиксирован, а другой фактор возрастает, то каждая дополнительная (предельная) единица возрастающего фактора менее полезна (с точки зрения прироста выпуска продукции), чем предыдущая единица.

Третье и четвёртное ограничения означают, что при фиксированном значении одного из факторов последовательное увеличение другого фактора будет приводить к сокращению прироста значения Q.

Пятое и шестое ограничения означают, что каждый из факторов производства необходим в том смысле, что если один из факторов равен нулю (K=0 или L=0), то и объём производства также равен нулю Q=0.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)