АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Использование фиктивных переменных для определения структурных изменений в экономике

Читайте также:
  1. C. Использование комбинации диуретиков из разных фармакологических групп
  2. Exercises for Lesson 4. There is / there are. Функция. Формы. Использование в ситуации гостиницы
  3. III Литературоведческие определения.
  4. III.Выпишите из абзацев 4, 5, 6 словосочетания, в которых определения выражены существительными, и переведите их на русский язык.
  5. IV. Использование экскрементов производства
  6. VI. Вставьте в текст пропущенные слова и словосочетания. Дайте им определения.
  7. VI. ЭТАП Определения лица (группы лиц) принимающих решение.
  8. What is Public Relations? What are the advantages and the disadvantages of Public Relations? Why do marketers tend to underuse it( неполноеиспользованиеих)?
  9. Абсолютная тупость сердца: понятие, методика определения. Границы абсолютной тупости сердца в норме. Изменения границ абсолютной тупости сердца в патологии.
  10. Активная подвижность нижнего легочного края , методика проведения, нормативы. Диагностическое значение изменений активной подвижности нижнего легочного края.
  11. Акцизы: налогоплательщики и объекты налогообложения. Особенности определения налоговой базы при перемещении подакцизных товаров через таможенную границу РФ.
  12. Анализ финансового состояния предприятия: цели, задачи, формы и методы проведения. Система аналитических коэффициентов и ее использование.

Термин “фиктивные переменные” используется как противоположность “значащим” переменным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная — это индикаторная переменная, отражающая качественную характеристику. Чаще всего применяются бинарные фиктивные переменные, принимающие два значения, 0 и 1, в зависимости от определенного условия. Например, в результате опроса группы людей 0 может означать, что опрашиваемый - мужчина, а 1 - женщина. Могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону.

Регрессионная модель, включающая в качестве фактора (факторов) фиктивную переменную, называется регрессионной моделью с переменной структурой.

Рассмотрим временной ряд Xi j,

где i — это номер сезона (периода времени внутри года, напри мер, месяца или квартала);

(L — число сезонов в году);

j — номер года, j = (m — общее количество лет).

Количество уровней исходного ряда равно L × m = n. Число сезонных фиктивных переменных в регрессионной модели всегда должно быть на единицу меньше сезонов внутри года, т. е. должно быть равно величине L − 1. При моделировании годовых данных регрессионная модель, помимо фактора времени, должна содержать одиннадцать фиктивных компонент (12 − 1).

Каждому из сезонов соответствует определенное сочетание фиктивных переменных. Сезон, для которого значения всех фиктивных переменных равны нулю, принимается за базу сравнения. Для остальных сезонов одна из фиктивных переменных принимает значение, равное единице. Если имеются поквартальные данные, то значения фиктивных переменных D 1, D 2, D 3 будут принимать следующие значения для каждого из кварталов

  Квартал   D2   D3   D4
       
       
       
       

 

Общий вид регрессионной модели с переменной структурой в данном случае будет иметь вид:

yt =β0 +β1 × t +δ2 × D2 +δ3 × D3 +δ4 × D4 +εt

Построенная модель регрессии является разновидностью аддитивной модели временного ряда. Базисным уравнением исследуемой регрессионной зависимости будет являться уравнение тренда для первого квартала:

y =β +β × t

Тогда общий вид модели регрессии с переменной структурой будет иметь вид:

yt=β0+ β1*t+δ2*D2+δ3*D3+δ4*D4+εt.

Данная модель регрессии представляет собой одну из разновидностей аддитивной модели временного ряда.
На основе общей модели регрессии с переменной структурой можно составить базисную модель или модель тренда для первого квартала:

yt=β0+ β1*t+εt.

Также на основе общей модели регрессии с переменной структурой можно составить частные модели регрессии:

1) частная модель регрессии для второго квартала:

yt=β0+ β1*t+δ2+εt;

2) частная модель регрессии для третьего квартала:

yt=β0+ β1*t+δ3+εt;

3) частная модель регрессии для четвёртого квартала:

yt=β0+ β1*t+δ4+εt.

Данные частные модели регрессии отличаются друг от друга только на величину свободного члена δi.

Коэффициент β1 характеризует среднее абсолютное изменение уровней временного ряда под влиянием основной тенденции.

Сезонная компонента для каждого сезона рассчитывается как разность между средним значением свободных членов всех частных моделей регрессий и значением постоянного члена одной из моделей.

Среднее значение свободных членов всех частных моделей регрессий рассчитывается по формуле:

Для поквартальных данных оценка сезонных отклонений осуществляется по формулам:

1) оценка сезонного отклонения для первого квартала:

2) оценка сезонного отклонения для второго квартала:

3) оценка сезонного отклонения для третьего квартала:

4) оценка сезонного отклонения для четвёртого квартала:

Сумма сезонных отклонений должна равняться нулю.

 

51. Тест Чоу на наличие структурных изменений в регрессионной модели.
Пусть дана выборка S объемом n, которая разбита на две подвыборки , с объемами соответственно: . Для временных рядов это означает обычно, что определен момент времени, подозреваемый на "структурный сдвиг", соответственно временные ряды разбиваются на ряды до этого момента и после.

Пусть рассматривается регрессионная модель , где -параметры модели (их количество обозначим ). Предполагается, что подвыборки могут быть неоднородными. Таким образом, для двух подвыборок имеем две модели:

Эти две модели можно представить одной моделью, если использовать индикатор подвыборки .

Используя эту переменную мы можем записать следующую модель

Таким образом, имеем одну модель для всей выборки с количеством параметров . Это "длинная модель" - модель без ограничений. Если в этой модели наложить ограничение , то получим, очевидно исходную модель c параметрами также для всей выборки. Это "короткая модель" - модель с линейными ограничениями на параметры длинной модели.

Тогда процедуру теста можно свести к проверке этого линейного ограничения. При нормально распределенных случайных ошибках применяется стандартный F-тест для проверки линейных ограничений. Статистика этого теста строится по известному принципу:

Соответственно, если значение этой статистики больше критического при данном уровне значимости, то гипотеза об ограничениях отвергается в пользу длинной модели, то есть выборки признаются неоднородными и необходимо строить две разные модели для выборок. В противном случае выборка однородна (параметры модели стабильны) и можно строить общую модель для выборки.

Кроме F-теста можно применять и другие тесты для проверки гипотезы об ограничениях, в частности LR-тест. Особенно это касается более общего случая, когда выделяются не две подвыборки, а несколько. Если подвыборок m, то соответствующая LR-статистика будет иметь распределение


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)