АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Линейная модель множественной регрессии. Порядок ее оценивания МНК в Excel. Смысл выходной статистической информации функции ЛИНЕЙН

Читайте также:
  1. C) екі факторлы модель
  2. CALS в широком смысле
  3. F-тест на качество оценивания.
  4. GAP модель: (модель разрывов)
  5. I. Порядок наследования восходящих
  6. I. Призвание к наследованию (основания и порядок)
  7. I. Прокурор: понятие, положение, функции и профессиональные задачи.
  8. I. Функции окончания «-s»
  9. I. Функции окончания «-s»
  10. II. Порядок наследования нисходящих, в частности
  11. II. Порядок подачи и рассмотрения заявлений на оказание материальной помощи
  12. II. ПОРЯДОК ПРИЕМА И УВОЛЬНЕНИЯ РАБОТНИКОВ

Построение модели множественной регрессии является одним из методов характеристики аналитической формы связи между зависимой (результативной) переменной и несколькими независимыми (факторными) переменными.

Модель множественной регрессии строится в том случае, если коэффициент множественной корреляции показал наличие связи между исследуемыми переменными.

Общий вид линейной модели множественной регрессии:

yi01x1i+…+βmxmii,

где yi – значение i-ой результативной переменной, i=1,n;

x1i…xmi – значения факторных переменных;

β0…βm – неизвестные коэффициенты модели множественной регрессии;

εi – случайные ошибки модели множественной регрессии.

При построении нормальной линейной модели множественной регрессии учитываются пять условий:

1) факторные переменные x1i…xmi – неслучайные или детерминированные величины, которые не зависят от распределения случайной ошибки модели регрессии βi;

2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:

3) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:

4) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т.е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю):

Это условие выполняется в том случае, если исходные данные не являются временными рядами;

5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: εi~N(0, G2).

 

Функция ЛИНЕЙН() – рассчитывает статистику для ряда с применением метода наименьших квадратов, чтобы вычислить прямую линию, которая наилучшим образом аппроксимирует имеющиеся данные. Функция возвращает массив, который описывает полученную прямую. Поскольку возвращается массив значений, функция должна задаваться в виде формулы массива.

Создание формулы массива:

· Выделите диапазон ячеек, в которые следует ввести формулу.



· Наберите формулу.

· Нажмите клавиши CTRL+SHIFT+ENTER.

Чтобы найти параметры множественной регрессии средствами Excel, используется функция ЛИНЕЙН(Y;X;1;1), где Y - массив для значений Y, X - массив для значений X (указывается как единый массив для всех значений Хi).

Конст — логическое значение, которое указывает, требуется ли, чтобы константа b была равна 0.

· Если конст имеет значение ИСТИНА или опущено, то b вычисляется обычным образом.

· Если аргумент конст имеет значение ЛОЖЬ, то b полагается равным 0 и значения m подбираются так, чтобы выполнялось соотношение y = mx.

Статистика. Необязательный аргумент. Логическое значение, которое указывает, требуется ли возвратить дополнительную регрессионную статистику.

После применения функции «линейн» мы получаем таблицу, состоящую из пяти строк:


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)