АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
F-тест на качество оценивания
Даже если между у и х отсутствует зависимость, по любой данной выборке наблюдений может показаться, что такая зависимость существует, возможно и слабая. Только по случайному стечению обстоятельств выборочная ковариация будет в точности равна нулю. Следовательно, только чисто случайно коэффициент корреляции и коэффициент R2 будут в точности равны нулю. Это представляет для нас проблему. Как узнать, действительно ли полученное при оценке регрессии значение коэффициента R2 отражает истинную зависимость или оно появилось случайно? В принципе можно было бы принять следующую процедуру. Сформулируем в качестве нулевой гипотезы утверждение, что связь между у и х отсутствует, и найдем значение коэффициента, которое может быть превышено в 5% случаев. Затем используем эту цифру в качестве критического значения для проверки гипотезы при 5-процентном уровне значимости. Если этот уровень превышается, то мы отклоняем нулевую гипотезу. Если он не превышен, то эта гипотеза принимается. Такая проверка, подобно г-тесту для коэффициента регрессии, не служит доказательством. Действительно, при 5-процентном уровне значимости имеется риск допущения ошибки I рода (отклонения нулевой гипотезы, когда она истинна) в 5% случаев, но можно, конечно, снизить этот риск за счет использования более высокого уровня значимости, например в ]%. Тогда критическое значение может быть случайно превышено только в \% случаев, поэтому оно выше критического значения для проверки гипотезы при 5-процентном уровне значимости. Каким образом можно определить критическое значение коэффициента R 2 при любом уровне значимости? Здесь возникает небольшая проблема. У нас нет таблицы критических значений коэффициента R 2. Традиционная процедура состоит в использовании косвенного подхода и выполнения так называемого t -теста, основанного на анализе дисперсии Предположим, что, как и прежде, можно разложить дисперсию зависимой переменной на «объясненную» и «необъясненную» составляющие, воспользовавшись Используя определение выборочной дисперсии и умножив на п обе части уравнения можно представить его следующим образом: (Напомним, что е = 0 и выборочное среднее значение у равняется выборочному среднему у.) Левая часть уравнения представляет собой общую сумму квадратов отклонений (TSS) зависимой переменной от ее выборочного среднего значения. Первый член в правой части уравнения является объясненной суммой квадратов (ESS), а второй член - необъясненной суммой квадратов отклонений (RSS), который может быть просто назван S: TSS = ESS + RSS. F-cmamucmuкa для проверки качества оценивания регрессии записывается как отношение объясненной суммы квадратов (в расчете на одну независимую переменную к остаточной сумме квадратов) в расчете на одну степень свободы: где k — число независимых переменных. После деления на TSS числителя и знаменателя соотношения F-статистика может быть эквивалентно выражена на основе коэффициента R2: После вычисления критерия F по значению коэффициента R2 вы отыскиваете величину Fкрит — критическое значение F в соответствующей таблице. Если F > Fкрит, то вы отклоняете нулевую гипотезу и делаете вывод о том, что имеющееся «объяснение» поведения величины у лучше, чем можно было бы получить чисто случайно. Какие же проблемы возникают при использовании этого косвенного подхода? Почему бы не иметь таблицу критических значений коэффициента R2? Ответ заключается в том, что таблица значений критерия F является полезной для многих способов проверки дисперсии, одним из которых выступает расчет коэффициента R2. Вместо специализированной таблицы для каждого конкретного случая намного удобнее (или, по меньшей мере, экономнее) иметь одну обобщенную таблицу, делая при необходимости преобразования типа
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Поиск по сайту:
|