АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Случайные составляющие коэффициентов регрессии
Коэффициент регрессии, вычисленный методом наименьших квадратов, -это особая форма случайной величины, свойства которой зависят от свойств остаточного члена в уравнении. Мы продемонстрируем это сначала теоретически, а затем посредством контролируемого эксперимента. В частности, мы увидим, какое значение для оценки коэффициентов регрессии имеют некоторые конкретные предположения, касающиеся остаточного члена. В ходе рассмотрения мы постоянно будем иметь дело с моделью парной регрессии, в которой у связан с х следующей зависимостью: y=α+βx+e и на основе п выборочных наблюдений будем оценивать уравнение регрессии. Мы также будем предполагать, что х — это неслучайная экзогенная переменная. Иными словами, ее значения во всех наблюдениях можно считать заранее заданными и никак не связанными с исследуемой зависимостью. Во-первых, заметим, что величина y состоит из двух составляющих. Она включает неслучайную составляющую (α+βx), которая не имеет ничего общего с законами вероятности (а и b могут быть неизвестными, но тем не менее это постоянные величины), и случайную составляющую e. Отсюда следует, что, когда мы вычисляем b по обычной формуле: . b также содержит случайную составляющую. Cov (x, у) зависит от значений у, а у зависит от значений e. Если случайная составляющая принимает разные значения в п наблюдениях, то мы получаем различные значения у и, следовательно, разные величины Cov (х, у) и b. Теоретически мы можем разложить b на случайную и неслучайную составляющие. Воспользовавшись правилом расчета ковариации получим: По ковариационным правилам, ковариация Cov (x,α) равна нулю, ковариация Cov (x,βх) равна βCov (x, х). Причем Cov (x, х) это тож, что и D(x). Следовательно, мы можем записать: Итак, мы показали, что коэффициент регрессии Ь, полученный по любой выборке, представляется в виде суммы двух слагаемых:
- постоянной величины, равной истинному значению коэффициента β;
2) случайной составляющей, зависящей от Cov (x,e), которой обусловлены отклонения коэффициента b от константы β. Аналогичным образом можно показать, что а имеет постоянную составляющую, равную истинному значению α, плюс случайную составляющую, которая зависит от случайного фактора e. Следует заметить, что на практике мы не можем разложить коэффициенты регрессии на составляющие, так как не знаем истинных значений α и β или фактических значений e в выборке. Они интересуют нас потому, что при определенных предположениях позволяют получить некоторую информацию о теоретических свойствах а и b.
Условия Гаусса–Маркова
Не будет преувеличением сказать, что именно понимание важности этих условий отличает компетентного исследователя, использующего регрессионный анализ, от некомпетентного. Если эти условия не выполнены, исследователь должен это сознавать. Если корректирующие действия возможны, то аналитик должен быть в состоянии их выполнить. Если ситуацию исправить невозможно, исследователь должен быть способен оценить, насколько серьезно это может повлиять на результаты. Рассмотрим теперь эти условия одно за другим, объясняя кратко, почему они имеют важное значение. Три последних условия будут также подробно рассмотрены в следующих главах. 1-е условие Гаусса—Маркова: M(ei) = 0 для всех наблюдений Первое условие состоит в том, что математическое ожидание случайного члена в любом наблюдении должно быть равно нулю. Иногда случайный член будет положительным, иногда отрицательным, но он не должен иметь систематического смещения ни в одном из двух возможных направлений. Фактически если уравнение регрессии включает постоянный член, то обычно бывает разумно предположить, что это условие выполняется автоматически, так как роль константы состоит в определении любой систематической тенденции в у, которую не учитывают объясняющие переменные, включенные в уравнение регрессии. 2-е условие Гаусса—Маркова: M(ei2) постоянна для всех наблюдений Второе условие состоит в том, что дисперсия случайного члена должна быть постоянна для всех наблюдений. Иногда случайный член будет больше, иногда меньше, однако не должно быть априорной причины для того, чтобы он порождал большую ошибку в одних наблюдениях, чем в других. Эта постоянная дисперсия обычно обозначается σ2, а условие записывается следующим образом: M(ei2)=σ2 Величина σ2 конечно, неизвестна. Одна из задач регрессионного анализа состоит в оценке стандартного отклонения случайного члена. Если рассматриваемое условие не выполняется, то коэффициенты регрессии, найденные по обычному методу наименьших квадратов, будут неэффективны, и можно получить более надежные результаты путем применения модифицированного метода регрессии. 3-е условие Гаусса—Маркова: Cov (ei,ej) = 0 (i≠j) Это условие предполагает отсутствие систематической связи между значениями случайного члена в любых двух наблюдениях. Например, если случайный член велик и положителен в одном наблюдении, это не должно обусловливать систематическую тенденцию к тому, что он будет большим и положительным в следующем наблюдении (или большим и отрицательным, или малым и положительным, или малым и отрицательным). Случайные члены должны быть абсолютно независимы друг от друга. В силу того, что Е (ei) = Е(ej) = 0, данное условие можно записать следующим образом: M(eiej) = 0 (i≠j). Если это условие не будет выполнено, то регрессия, оцененная по обычному методу наименьших квадратов, вновь даст неэффективные результаты. В следующих лекциях рассматриваются возникающие здесь проблемы и пути их преодоления. 4-е условие Гаусса—Маркова: случайный член должен быть распределен независимо от объясняющих переменных В большинстве глав книги мы будем в сущности использовать более сильное предположение о том, что объясняющие переменные не являются стохастическими, т. е. не имеют случайной составляющей. Значение любой независимой переменной в каждом наблюдении должно считаться экзогенным, полностью определяемым внешними причинами, не учитываемыми в уравнении регрессии. Если это условие выполнено, то теоретическая ковариация между независимой переменной и случайным членом равна нулю. Так как Е(e) = 0, то Cov(xi,ei) = M{(хi – )(ei)} = M(xiei)- M(et) = M(xiui). Следовательно, данное условие можно записать также в виде: M(xiei) = 0 Предположение о нормальности Наряду с условиями Гаусса—Маркова обычно также предполагается нормальность распределения случайного члена. Читатели должны знать о нормальном распределении из вводного курса статистики. Дело в том, что если случайный член и нормально распределен, то так же будут распределены и коэффициенты регрессии. Это условие пригодится нам позже в данной главе, когда потребуется проводить проверку гипотез и определять доверительные интервалы для α и β, используя результаты построения регрессии. Предположение о нормальности основывается на центральной предельной теореме. В сущности, теорема утверждает, что если случайная величина является общим результатом взаимодействия большого числа других случайных величин, ни одна из которых не является доминирующей, то она будет иметь приблизительно нормальное распределение, даже если отдельные составляющие не имеют нормального распределения. Случайный член и определяется несколькими факторами, которые не входят в явной форме в уравнение регрессии. Поэтому даже если мы ничего не знаем о распределении этих факторов (или даже об их сущности), мы имеем право предположить, что они нормально распределены. В любом случае вряд ли вы столкнетесь здесь с проблемами.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Поиск по сайту:
|