|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вероятностная интерпретация коэффициентов критерия ГурвицаДанный критерий позволяет учитывать комбинацию наихудших состояний. Смысл его состоит в нахождении по специальной формуле эффективности всех стратегий игрока А и последующее сравнении данных показателей эффективности для выбора наиболее оптимальной стратегии, при условии полной неопределённости, т.е. вероятности состояния природы нам неизвестны. Другими словами, при выборе решения мы находим некоторый средний результат при состоянии, находящемся между крайним пессимизмом и безудержным оптимизмом. Критерий Гурвица целесообразно применять в следующих ситуациях: 1. Информация о состояниях окружающей среды отсутствует или недостоверна; 2. Необходимо считаться возможным появлением наихудшего и наилучшего состояния природы; 3. Допускается некоторый риск. Рассмотрим игру с природой размера m x n, m Введём специальный коэффициент λ Эффективность чистой стратегии Ai в смысле критерия Гурвица [(Hur)p (λ)] характеризуется показателем: (Hur)pi (λ)= (1- λ)Wi + λMi , i = 1,2,…,m, (2.1) где Wi и Mi - показатели эффективности стратегии Ai соответственно по критерию Вальда и по максимаксному критерию. Таким образом, Игрок А при использовании критерия Гурвица с коэффициентом λ Если открыть скобки в равенстве (2.1) и несколько преобразовать данное выражение, то можно получить показатель эффективности (Hur)pi (λ) в форме линейной функции от аргумента λ (Hur)pi (λ) = (Mi -Wi) λ + Wi (2.2) Ценой игры в чистых стратегиях по критерию Гурвица с коэффициентом оптимизма λ относительно выигрышей или (Hur)p (λ)-ценой в чистых стратегиях называется максимальный из показателей эффективности:
Оптимальной во множестве чистых стратегий по критерию Гурвица с коэффициентом λ относительно выигрышей, или (Hur)p (λ) – оптимальной во множестве
Природа может находиться в самом выгодном положении с вероятностью λ и в самом невыгодном с вероятностью (1- λ). Можно также трактовать параметр λ как степень оптимизма лица, принимающего решения. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |