|
||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Понятие о конечных позиционных играх с совершенной информациейПозиционная игра – это бескоалиционная игра, моделирующая процессы последовательного принятия решений игроками в условиях меняющейся во времени и, вообще говоря, неполной информации. Различают позиционные игры с полной информацией и позиционные игры с неполной информацией. Игры с полной информацией образуют наиболее простой класс позиционных игр. Не вполне строго, но практически можно считать, что игра является игрой с полной информацией, если: · игроки воздействуют на игровую ситуацию дискретными действиями — ходами, порядок ходов определён правилами и не зависит от таких параметров, как скорость реакции игроков (то есть очередной ход делает тот, кто должен его сделать по правилам, а не тот, кто первым догадался или успел его сделать); · в любой момент игры все игроки имеют полную информацию о состоянии игры, то есть о позиции и всех возможных ходах любого из игроков. Любая игра Позиционные игры также можно разделить на игры с совершенной информацией и несовершенной информацией. В игре с совершенной информацией каждый игрок всегда знает точно, в каком месте дерева игры он находится, нет одновременных ходов, и все игроки наблюдают ходы природы (если таковые имеются). Определение 9.2. Игра в позиционной форме называется игрой с совершенной информацией, если каждое информационное множество состоит из единственной вершины (рис. 9.3). В противном случае игра называется игрой с несовершенной информацией. Определение 9.3. Стратегией в позиционной игре называется полный возможный план действий, который говорит, что игрок будет делать в каждом его информационном множестве. ( антагонистическая игра с совершенной информацией ) 1-й ход. Игрок A выбирает число x из множества двух чисел 2-й ход. Игрок B выбирает число y из множества двух чисел Функция
На рис. 9.4 показаны дерево игры и информационные множества (оранжевый пунктир). ·
51.Стратегическая форма позиционной игры с совершенной информацией. Позиционная игра – это бескоалиционная игра, моделирующая процессы последовательного принятия решений игроками в условиях меняющейся во времени и, вообще говоря, неполной информации. В игре с совершенной информацией каждый игрок всегда знает точно, в каком месте дерева игры он находится, нет одновременных ходов, и все игроки наблюдают ходы природы (если таковые имеются). Игра в позиционной форме называется игрой с совершенной информацией, если каждое информационное множество состоит из единственной вершины (см. рисунок) Пример: ( антагонистическая игра с совершенной информацией ) 1-й ход. Игрок A выбирает число x из множества двух чисел 2-й ход. Игрок B выбирает число y из множества двух чисел Функция
На рис. 9.4 показаны дерево игры и информационные множества (оранжевый пунктир). Рис. 9.4. Дерево игры с совершенной информацией 52.Равновесие в позиционной игре. Принцип последовательной рационализации. Теорема: В конечной (позиционной) игре с совершенной информацией существует равновесие по Нэшу в чистых стратегиях. Обсуждение данного факта мы начнём с примера, который покажет, что равновесие по Нэшу не всегда даёт разумное предсказание. Пример. Фирма E (entrant) – новичок – рассматривает вопрос о том, входить ли на рынок, где в текущий момент есть одна единственная укоренившаяся фирма I (incumbent). Если E решается на вход, то I может ответить двумя способами: она может предоставить вход, отдавая часть своих продаж, но, не изменяя цену, либо она может вступить в хищническую войну, которая приведёт к «драматическому» снижению цен. Дерево данной игры представлено на рис. 9.8. Рис. 9.8. Дерево игры «Борьба за рынок»
Стратегии игрока E:
Стратегии игрока I:
Соответствующая игре нормальная форма имеет вид:
В этой игре две равновесных по Нэшу ситуации (0, 2) и (2, 1) в чистых стратегиях. Но первая из этих ситуаций представляет собой предсказание, не являющееся разумным. Для того чтобы исключить ситуации типа Итак, после того как E выбрал стратегию Рис. 9.9. Дерево редуцированной игры «Борьба за рынок»
В результате получаем простейшую задачу индивидуального решения, причём очевидным является решение игрока E войти на рынок.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |