|
||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Понятие о конечных позиционных играх с совершенной информациейПозиционная игра – это бескоалиционная игра, моделирующая процессы последовательного принятия решений игроками в условиях меняющейся во времени и, вообще говоря, неполной информации. Различают позиционные игры с полной информацией и позиционные игры с неполной информацией. Игры с полной информацией образуют наиболее простой класс позиционных игр. Не вполне строго, но практически можно считать, что игра является игрой с полной информацией, если: · игроки воздействуют на игровую ситуацию дискретными действиями — ходами, порядок ходов определён правилами и не зависит от таких параметров, как скорость реакции игроков (то есть очередной ход делает тот, кто должен его сделать по правилам, а не тот, кто первым догадался или успел его сделать); · в любой момент игры все игроки имеют полную информацию о состоянии игры, то есть о позиции и всех возможных ходах любого из игроков. Любая игра называется конечной, если она содержит конечное множество игроков , множества чистых стратегий содержат конечное число элементов (стратегий). Дерево такой игры, записанное в позиционной форме, будет иметь конечное множество вершин. Позиционные игры также можно разделить на игры с совершенной информацией и несовершенной информацией. В игре с совершенной информацией каждый игрок всегда знает точно, в каком месте дерева игры он находится, нет одновременных ходов, и все игроки наблюдают ходы природы (если таковые имеются). Определение 9.2. Игра в позиционной форме называется игрой с совершенной информацией, если каждое информационное множество состоит из единственной вершины (рис. 9.3). В противном случае игра называется игрой с несовершенной информацией. Определение 9.3. Стратегией в позиционной игре называется полный возможный план действий, который говорит, что игрок будет делать в каждом его информационном множестве. ( антагонистическая игра с совершенной информацией ) 1-й ход. Игрок A выбирает число x из множества двух чисел . 2-й ход. Игрок B выбирает число y из множества двух чисел , зная выбор числа x игроком A. Функция выигрышей игрока A за счёт игрока B задаётся так: , , , . На рис. 9.4 показаны дерево игры и информационные множества (оранжевый пунктир). ·
51.Стратегическая форма позиционной игры с совершенной информацией. Позиционная игра – это бескоалиционная игра, моделирующая процессы последовательного принятия решений игроками в условиях меняющейся во времени и, вообще говоря, неполной информации. В игре с совершенной информацией каждый игрок всегда знает точно, в каком месте дерева игры он находится, нет одновременных ходов, и все игроки наблюдают ходы природы (если таковые имеются). Игра в позиционной форме называется игрой с совершенной информацией, если каждое информационное множество состоит из единственной вершины (см. рисунок) Пример: ( антагонистическая игра с совершенной информацией ) 1-й ход. Игрок A выбирает число x из множества двух чисел . 2-й ход. Игрок B выбирает число y из множества двух чисел , зная выбор числа x игроком A. Функция выигрышей игрока A за счёт игрока B задаётся так: , , , . На рис. 9.4 показаны дерево игры и информационные множества (оранжевый пунктир). Рис. 9.4. Дерево игры с совершенной информацией 52.Равновесие в позиционной игре. Принцип последовательной рационализации. Теорема: В конечной (позиционной) игре с совершенной информацией существует равновесие по Нэшу в чистых стратегиях. Обсуждение данного факта мы начнём с примера, который покажет, что равновесие по Нэшу не всегда даёт разумное предсказание. Пример. Фирма E (entrant) – новичок – рассматривает вопрос о том, входить ли на рынок, где в текущий момент есть одна единственная укоренившаяся фирма I (incumbent). Если E решается на вход, то I может ответить двумя способами: она может предоставить вход, отдавая часть своих продаж, но, не изменяя цену, либо она может вступить в хищническую войну, которая приведёт к «драматическому» снижению цен. Дерево данной игры представлено на рис. 9.8. Рис. 9.8. Дерево игры «Борьба за рынок»
Стратегии игрока E: – не входить на рынок; – входить на рынок. Стратегии игрока I: – объявить войну игроку E, если он вошёл в рынок; – предоставить игроку E вход, отдавая часть своих продаж, но, не изменяя цену. Соответствующая игре нормальная форма имеет вид:
В этой игре две равновесных по Нэшу ситуации (0, 2) и (2, 1) в чистых стратегиях. Но первая из этих ситуаций представляет собой предсказание, не являющееся разумным. Для того чтобы исключить ситуации типа мы рассмотрим принцип последовательной рационализации, который составляет основу метода обратной индукции – основного метода решения позиционных игр: оптимальная стратегия игры должна предписывать оптимальный ход в каждой вершине дерева. Т.е., если игрок находится в некоторой вершине дерева, его стратегия должна предписывать оптимальный выбор, начиная с этой точки, при данных стратегиях его оппонентов. Согласно данному принципу стратегия не является оптимальной, поскольку рассматриваемые в игре ответы I имеют смысл, только если фирма E вошла на рынок. Если игрок E вошёл на рынок, оптимальным поведением игрока I будет предоставить возможность E действовать на рынке. Итак, после того как E выбрал стратегию , оптимальной стратегией для игрока I будет . Теперь мы можем определить оптимальное поведение фирмы E до её входа на рынок. Это можно сделать, рассмотрев редуцированную позиционную форму, где после входа на рынок игрока E принятие решения игроком I заменено на соответствующие выигрыши, которые возникают при оптимальном его поведении (рис. 9.9). Рис. 9.9. Дерево редуцированной игры «Борьба за рынок»
В результате получаем простейшую задачу индивидуального решения, причём очевидным является решение игрока E войти на рынок.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.) |