АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Критерий Байеса оптимальности чистых стратегий относительно выигрышей

Читайте также:
  1. T - критерий Стьюдента
  2. Автокорреляция в остатках. Критерий Дарбина-Уотсона
  3. Автокорреляция в остатках. Критерий Дарбина-Уотсона
  4. Автокорреляция в остатках. Критерий Дарбина-Уотсона
  5. Автокорреляция в остатках. Критерий Дарбина-Уотсона в оценке качества уравнений, построенных по временным рядам.
  6. Автокорреляция остатков. Критерий Дарбина- Уотсона
  7. В. Пространство и время в общей теории относительности (ОТО)
  8. Величины относительно ее математического ожидания.
  9. Виды стратегий осуществления изменений.
  10. Все относительно. Александра Агеева
  11. Выводы относительно коллективного поведения
  12. Глава 4. КОНЦЕПЦИЯ ОТНОСИТЕЛЬНОСТИ

Иначе называется критерием математического ожидания. Используется для решения задач в условиях риска.

Пусть известны состояния П­1 … П­n и вероятности q1 … qn, с которыми природа П реализует эти состояния. Тогда мы находимся в ситуации принятия решения в условиях риска. Показателем эффективности стратегии по критерию Байеса относительно выигрышей называется среднее значение, или математическое ожидание выигрыша i -й строки с учётом вероятностей всех возможных состояний природы: , .

Оптимальной среди чистых стратегий по критерию Байеса относительно выигрышей считается стратегия с максимальным показателем эффективности: (матрица выигрышей), (матрица потерь).

Критерий Байеса относительно выигрышей и относительно рисков эквивалентны, т.е. если стратегия Sio является оптимальной по критерию Байеса относительно выигрышей, то она является оптимальной и по критерию Байеса относительно рисков, и наоборот.

Пример.

  , , , vi
S1       4,6
S2       2,4

Для матрицы выигрышей: , .

Для матрицы потерь: ,

28.Критерий Байеса оптимальности чистых стратегий относительно рисков.

Рассмотрим игру с природой с матрицей, в которой известны вероятности состояния природы q1.. qn. При принятии решения в условиях риска можно пользоваться не только средними выигрышами, но и средними рисками. Составим матрицу рисков для матрицы исходной, использую формулу рисков:

r i,j =

Показателем неэффективности стратегии Si по критерию Байеса относительно рисков называется среднее значение (мат ожидание) рисков i-й строки матрицы А, вероятности которых, совпадают с вероятностями природы. Пусть средний риск при стратегии Si равен

Показателем неэффективности стратегии по критерию Байеса относительно рисков называется среднее значение рисков i -й строки матрицы рисков: .

Соответствующий критерий: .

Тогда оптимальной среди чистых стратегий по критерию Байеса относительно рисков является стратегия Sio, показатель неэффективности которой минимален, т.е. минимален средний риск.

Критерий Байеса относительно выигрышей и относительно рисков эквивалентны, т.е. если стратегия Sio является оптимальной по критерию Байеса относительно выигрышей, то она является оптимальной и по критерию Байеса относительно рисков, и наоборот.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)