|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вероятностная модельИспользуя метод арифметического кодирования, можно достичь почти оптимального представления для заданного набора символов и их вероятностей (согласно теории энтропийного кодирования источника Шеннона оптимальное представление будет стремиться к числу −log 2P бит на каждый символ, вероятность которого P). Алгоритмы сжатия данных, использующие в своей работе метод арифметического кодирования, перед непосредственным кодированием формируют модель входных данных на основании количественных или статистических характеристик, а также, найденных в кодируемой последовательности повторений или паттернов — любой дополнительной информации, позволяющей уточнить вероятность появления символа P в процессе кодирования. Очевидно, что чем точнее определена или предсказана вероятность символа, тем выше эффективность сжатия. Рассмотрим простейший случай статической модели для кодирования информации, поступающей с системы обработки сигнала. Типы сигналов и соответствующие им вероятности распределены следующим образом: · 60 % вероятность нейтрального значения сигнала или NEUTRAL. · 20 % вероятность положительного значения сигнала или POSITIVE. · 10 % вероятность отрицательного значения сигнала или NEGATIVE. · 10 % вероятность признака конца кодируемой последовательности или END-OF-DATA. Появление последнего символа для декодера означает, что вся последовательность была успешно декодирована. (В качестве альтернативного подхода, но необязательно более успешно, можно использовать блочный алгоритм фиксированной длины.) Следует также отметить, что в качестве алфавита вероятностной модели метода можно рассматривать любой набор символов, исходя из особенностей решаемой задачи. Более эвристические подходы, использующие основную схему метода арифметического кодирования, применяют динамические или адаптивные модели. Идея данных методов заключается в уточнении вероятности кодируемого символа за счёт учёта вероятности предшествующего или будущего контекста (то есть, вероятность появления кодируемого символа после определённого k-го числа символов слева или справа, где k — это порядок контекста).
Кодирование сообщения Возьмём для примера следующую последовательность: NEUTRAL NEGATIVE END-OF-DATA Сначала разобьём отрезок от 0 до 1 согласно частотам сигналов. Разбивать отрезок будем в порядке, указанном выше[2]. Теперь начнём кодировать с первого символа. Первому символу — NEUTRAL соответствует отрезок от 0 до 0.6. Разобьём этот отрезок аналогично отрезку от 0 до 1. Закодируем второй символ — NEGATIVE. На отрезке от 0 до 0.6 ему соответствует отрезок от 0.48 до 0.54. Разобьём этот отрезок аналогично отрезку от 0 до 1. Закодируем третий символ — END-OF-DATA. На отрезке от 0.48 до 0.54 ему соответствует отрезок от 0.534 до 0.54. Так как это был последний символ, то кодирование завершено. Закодированное сообщение — отрезок от 0.534 до 0.54 или любое число из него, например, 0.538. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |