АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ГАЗОВАЯ ФАЗА ПОЧВЫ

Читайте также:
  1. АНАЭРОБНАЯ ИНФЕКЦИЯ. ГАЗОВАЯ ГАНГРЕНА.
  2. ВОДНЫЙ РЕЖИМ ПОЧВЫ
  3. Воспроизводство плодородия почвы в интенсивном земледелии
  4. Выбор обработки почвы и методов борьбы с сорняками
  5. Вынос основных элементов питания с тонной основной и соответствующим количеством побочной продукции, кг (минеральные почвы)
  6. Газовая защита трансформатора
  7. Газовая промышленность
  8. Геологические условия и почвы
  9. ГЛАВА 2. СПЕЦИФИКА ПОЧВЫ КАК СРЕДЫ ОБИТАНИЯ МИКРООРГАНИЗМОВ
  10. Действительно возможный урожай, вынос элементов урожаем, запасы пит.веществ в почве, коэффициент использования пит.веществ из почвы и удобрений
  11. ЖИДКАЯ ФАЗА ПОЧВЫ

Почва почти всегда содержит большое количество пор (10-60% объема), частично заполненных водой и газами. Состав почвенных газов, с одной стороны, определяется скоростью биохимических процессов, происходящих в почве, с другой - поступлением газов из атмосферы.

Абиотические процессы газовыделения и связывания газов на фоне перечисленных играют весьма скромную роль. Оценивая роль газов в почве, академик В.И. Вернадский (1926) писал: «Почва, взятая без газов, не есть почва. Роль почвы в истории земной коры отнюдь не соответствует тонкому слою, какой она образует на ее поверхности. Но она вполне отвечает той огромной активной энергии, которая собрана в ее живом веществе и которая способна к переносу благодаря проникающим в почву газам. Говоря о значении биохимических процессов в почвах и о значении почвы в области биосферы, мы, другими словами, скрыто указываем на первенствующую роль газов в почвенных процессах и на значение этих газов в газовом обмене земной коры».

Раскрытие роли почвенных газов шло главным образом по пути выяснения интенсивности и значения поглощения почвой кислорода и выделения углекислого газа. Другие газы изучались мало. Установлено, что эти процессы идут в огромных масштабах: потребление кислорода за 1 ч составляет 1000-4000 л/га; примерно в таких же масштабах выделяется и углекислый газ. Рассчитано, что запасов кислорода в почве в связи с интенсивностью его потребления почвенными микроорганизмами и корнями растений хватило бы всего на 12-48 ч, в некоторых почвах - на 100 ч, если бы его запас не пополнялся из атмосферы. Газообмен между воздухом и почвой идет весьма интенсивно. Обычно в пахотном горизонте за каждый час происходит почти полное обновление воздуха. Построенная модель газообмена в системе почва-атмосфера позволила определить, что главную роль в газообмене играет диффузия и подчиненную, но для некоторых условий весьма существенную, - конвекция. Конвекция в большой степени связана с разностью температуры почвы и воздуха, изменениями барометрического давления, влиянием ветра, выпадением осадков и изменением уровня грунтовой воды и верховодки.

Почвенные микроорганизмы и корни растений резко изменяют газовую фазу почвы. По газовому составу почвенный воздух в десятки и сотни раз отличается от атмосферного воздуха, причем такие различия наблюдаются несмотря на то, что, как отмечалось, почвенный и атмосферный воздух быстро обмениваются. Даже этот быстрый обмен не приводит к выравниванию содержания газов в атмосфере и почве, т.е. продукция и потребление газов в почве идут очень быстро. Градиент концентраций между почвой и атмосферой поддерживается благодаря интенсивной деятельности почвенной биоты. Почва выступает как мощный регулятор газового состава атмосферы.

Почвенный воздух содержит в 10-100 раз больше углекислоты и во много раз меньше кислорода, чем атмосферный воздух. Содержание азота несущественно отличается от атмосферного. Кроме того, почвенный воздух всегда содержит пары воды и ряд микрогазов, а также летучие органические вещества, которые в каждый данный момент, хотя и содержатся в небольших количествах, но из-за быстрого круговорота, а также сильного физиологического действия могут иметь большое значение в балансе веществ в экосистеме.

Определение интенсивности процессов газообразования и потребления газов в почве проводится двумя принципиально разными способами:

1) в природе - актуальная, естественная, природная активность,

2) в модельных опытах (чаще всего в почвенных образцах), в которых создаются оптимальные условия для протекания данного процесса (потенциальная активность). Часто при таких условиях процессы проходят в десятки, сотни и тысячи раз интенсивнее, чем в естественной среде.

Газы и летучие органические соединения только частично поступают в почву извне и в основном образуются в самой почве, причем их источником могут быть микроорганизмы, растения и животные. Наибольшее разнообразие газообразных веществ в почве образуют микроорганизмы: углекислый газ, окислы азота, азот, аммиак, сероводород, водород, метан, этан, бутан, пропан, этилен, пропилен, бутен и еще ряд газообразных углеводородов. Они проводят превращения соединений металлов.

Все газы, которые микроорганизмы способны образовывать, они могут и изменять. Благодаря соседству и многократному повторению аэробных и анаэробных микрозон, достаточно плотному расположению микроорганизмов внутри и на поверхности почвенных агрегатов, а также сложности системы пор в почве, по которым движутся газы, почва представляет собой весьма совершенную ловушку для газов (исключение составляют макрогазы, например СО2, пары воды, которых очень много и которые интенсивно не используются микроорганизмами). Можно предположить, что только небольшой части микрогазов и летучих органических веществ удается вырваться наружу в атмосферу. Поверхность пор капилляров и агрегатов заселена микроорганизмами, которые могут весьма совершенно перехватывать диффундирующие, особенно энергонесущие газы.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)