|
|||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Моменты инерции некоторых однородных тел
Момент инерции тела, если известно распределение массы тела относительно оси вращения mi (R), может быть определён как
. (2.11)
Детали электропривода, например ротор электрической машины, представляют собой конструкции, состоящие из деталей сложных форм и изготовленные из материалов различной плотности. Следовательно, расчёт момента инерции связан со значительными трудностями. В случаях, когда расчёт момента инерции не возможен либо затруднён, используют следующие методы экспериментального определения момента инерции. Метод свободного выбега (самоторможения) [2]. Сущность этого метода состоит в следующем. Исследуемый агрегат, включающий в себя электродвигатель и механически соединённые с ним элементы, разгоняется до некоторой установившейся частоты вращения в режиме х.х. . После этого электродвигатель отключают от сети и наступает процесс самопроизвольного торможения, т.е. торможения исключительно за счёт внутренних сил трения в подшипниках электродвигателя и сочленённых с ним вращающих частей о воздух. На преодоление этих сил трения затрачивается кинетическая энергия (Дж), запасенная во вращающихся частях агрегата:
. (2.12)
С другой стороны, эта энергия может быть определена как произведение мощности, затраченной на приведение во вращение агрегата в режиме х.х. на время : . (2.13)
Приравняв (9.1) к (9.2), получим выражение общего момента инерции, кг·м2: . (2.14)
Значения и определяют экспериментально, выполнив опыт х.х. и опыт свободного выбега, по кривой выбега: . Метод вспомогательного маятника. Этот метод применяют в тех случаях, когда метод свободного выбега не может быть использован, в частности для электрических машин большой мощности – до 1000 кВт. Для реализации этого метода вращающуюся часть машины устанавливают на подшипниках балансировочного станка. Если вращающаяся часть машины имеет собственные подшипники, то могут быть использованы и они. Испытания проводят на собственной машине. У коллекторных машин или асинхронных двигателей с фазным ротором при определении момента инерции следует поднять щётки. При использовании метода вспомогательного маятника к валу исследуемой вращающейся части прикрепляют дополнительную массу mдоп центр тяжести которой находится на расстоянии а от центра вала. Вращающуюся часть вместе со вспомогательным маятником следует привести в колебательное движение. При этом одностороннее угловое отклонение не должно превышать 15о. Период колебаний принимают как средний из нескольких колебаний. Для точности рекомендуется производить измерения периода колебаний в момент нахождения маятника через положение статического равновесия. Момент инерции испытуемой вращающейся части определяется по формуле . (2.15) Для повышения точности измерения момента инерции рекомендуется проводить измерения несколько раз с разными значениями дополнительной массы вспомогательного маятника mдоп или расстояния
Динамика вращательного движения твердого тела. Момент силы. Момент инерции. Теорема Штейнера. Момент импульса. Основной закон вращательного движения. – момент инерции системы материальных точек; – момент инерции тела, где – плотность тела. ТЕОРЕМА ШТЕЙНЕРА Моментом импульса системы материальных точек называется геометрическая сумма моментов импульсов точек, составляющих систему: . Моментом импульса материальной точки относительно осиZназывается скалярная величина, равная проекции момента импульса относительно произвольной точки, лежащей на осиZ, на эту ось. Аналогично моменту силы относительно оси, момент импульса относительно осиZ где pt – проекция импульса на направление вектора , направленного по касательной к окружности радиусом, проведенной через материальную точку перпендикулярно оси вращения (рис. 7б). Направление вектора образует с осью Z правовинтовую систему. LZ=IZ×wZ, где IZ – момент инерции тела относительно оси Z, wZ – проекция угловой скорости тела на ось Z. Для однородного тела, вращающегося относительно оси симметрии: .
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |