АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вопрос 8 Момент инерции твердого тела

Читайте также:
  1. II. Вопросительное предложение
  2. VII. Вопросник для анализа учителем особенностей индивидуального стиля своей педагогической деятельности (А.К. Маркова)
  3. X. примерный перечень вопросов к итоговой аттестации
  4. Аграрный вопрос
  5. Б у дельті Дунаю внаслідок нагромадження твердого річкового стоку
  6. Болгарский вопрос. Соборы на Западе на Востоке. Окончательное разделение 1054 года
  7. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница
  8. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница
  9. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница
  10. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 10 страница
  11. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 10 страница
  12. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 11 страница

Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси:

 

Рисунок 1.18 -

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси (рис. 1.18). Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом r и массой dm. Момент инерции каждого такого цилиндра dJ = r 2 dm (так как dr << r, то считаем, что расстояние всех точек цилиндра от оси равно r). Если ρ – плотность материала, объем 2πrhdr, то dm=2πrhρdr и dJ = 2πhρr3dr. Тогда момент инерции сплошного цилиндра

но так как объем цилиндра, то его масса , а момент инерции

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно произвольной оси равен моменту его инерции J с относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы т тела на квадрат расстояния а между осями:


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)