|
|||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Природа ферромагнетизмаКачественная теория ферромагнетизма была разработана французским физиком П. Вейссом. Последовательная количественная теория на основе квантовой механики развита Я. И. Френкелем и немецким физиком В. Гейзенбергом. Согласно представлениям Вейсса, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля. Вейсс предположил, что ферромагнетик ниже точки Кюри разбивается на большое число малых макроскопических областей — доменов, самопроизвольно намагниченных до насыщения. При отсутствии внешнего магнитного поля магнитные моменты отдельных доменов ориентированы хаотически и компенсируют друг друга, поэтому результирующий магнитный момент ферромагнетика равен нулю и ферромагнетик не намагничен. Внешнее магнитное поле ориентирует по полю магнитные моменты не отдельных атомов, как это имеет место в случае парамагнетиков, а целых областей спонтанной намагниченности. Поэтому с ростом H намагниченность J (см. рис. 4.32) и магнитная индукции В (см. рис. 4.33) уже в довольно слабых полях растут очень быстро. Этим объясняется также увеличение m ферромагнетиков до максимального значения в слабых полях. Эксперименты показали, что зависимость В от Н не является такой плавной, а имеет ступенчатый вид, как показано на рис. 4.33. Это свидетельствует о том, что внутри ферромагнетика домены поворачиваются по полю скачком. При ослаблении внешнего магнитного поля до нуля ферромагнетики сохраняют остаточное намагничение, так как тепловое движение не в состоянии быстро дезориентировать магнитные моменты столь крупных образований, какими являются домены. Поэтому и наблюдается явление магнитного гистерезиса (рис. 4.34). Для того чтобы ферромагнетик размагнитить, необходимо приложить коэрцитивную силу; размагничиванию способствуют также встряхивание и нагревание ферромагнетика. Точка Кюри оказывается той температурой, выше которой происходит разрушение доменной структуры. Существование доменов в ферромагнетиках доказано экспериментально. Прямым экспериментальным методом их наблюдения является метод порошковых фигур. На тщательно отполированную поверхность ферромагнетика наносится водная суспензия мелкого ферромагнитного порошка (например, магнетита). Частицы оседают преимущественно в местах максимальной неоднородности магнитного поля, т. е. на границах между доменами. Поэтому осевший порошок очерчивает границы доменов и подобную картину можно сфотографировать под микроскопом. Линейные размеры доменов оказались равными 10-4—10-2 см.
Вопросы 47 Основы единой теории электромагнитного поля Максвелла Ток смещения — это изменяющееся со временем электрическое поле, поэтому существует не только в вакууме или диэлектриках, но и внутри проводников, по которым проходит переменный ток. Плотность полного тока по Максвеллу . Полный ток в цепях переменного тока всегда замкнут, т. е. в проводнике существует ток проводимости, а в диэлектрике (вакууме) - ток смещения, который замыкает ток проводимости. В основе теории Максвелла лежат четыре уравнения: 1. Электрическое поле может быть как потенциальным (E Q), так и вихревым (ЕB), поэтому напряженность суммарного поля Е=Е Q +Е B. Так как циркуляция вектора E Q равна нулю (см. (4.78)), а циркуляция вектора ЕB определяется выражением (4.77), то циркуляция вектора напряженности суммарного поля
Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля. 2. Обобщенная теорема о циркуляции вектора Н (см. (4.82)):
Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами, либо переменными электрическими полями. 3. Теорема Гаусса для поля D (см. (3.44)):
Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью r, то формула (4.83) запишется в виде
4. Теорема Гаусса для поля В (см. (4.29)):
Материальные уравнения. Фундаментальные уравнения Максвелла еще не составляют полной системы уравнений электромагнитного поля. Этих уравнений недостаточно. Уравнения Максвелла необходимо дополнить материальными уравнениями, в которые входят величины, характеризующие индивидуальные свойства среды. Материальные уравнения наиболее просты в случае достаточно слабых электромагнитных полей, сравнительно медленно меняющихся в пространстве и во времени. В этом случае для изотропных сред, не содержащих сегнетоэлектриков и ферромагнетиков, материальные уравнения имеют следующий вид: D= e0e E, B= m0m H, j= g E+Е*, где e0 и m0 — соответственно электрическая и магнитная постоянные, e и m — соответственно диэлектрическая и магнитная проницаемости, g — удельная проводимость вещества, Е* — напряженность поля сторонних сил, обусловленная химическими или тепловыми процессами. Уравнения Максвелла линейны. Они содержат только первые производные полей Е и В по времени и пространственным координатам и первые степени плотности электрических зарядов ρ и токов j. Свойство линейности уравнений Максвелла непосредственно связано с принципом суперпозиции; если два каких-нибудь поля удовлетворяют уравнениям Максвелла, то это относится и к сумме этих полей. Уравнения Максвелла содержат уравнение непрерывности, выражающее закон сохранения электрического заряда. Уравнения Максвелла выполняются во всех инерциальных системах отсчета. Они являются релятивистски инвариантными. Это есть следствие принципа относительности, согласно которому все инерциальные системы отсчета физически валентны друг другу Для стационарных полей (Е= const и B=cоnst) уравнения Максвелла примут вид ; ; ; ,
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |