АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вопрос 13 Идеальный газ

Читайте также:
  1. II. Вопросительное предложение
  2. VII. Вопросник для анализа учителем особенностей индивидуального стиля своей педагогической деятельности (А.К. Маркова)
  3. X. примерный перечень вопросов к итоговой аттестации
  4. Аграрный вопрос
  5. Болгарский вопрос. Соборы на Западе на Востоке. Окончательное разделение 1054 года
  6. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница
  7. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница
  8. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница
  9. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 10 страница
  10. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 10 страница
  11. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 11 страница
  12. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 11 страница

Для вывода основного уравнения молекулярно-кинетической теории рассмотрим идеальный одноатомный газ. Предположим, что молекулы газа движутся хаотически, число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку  S (рисунок 2.5) и вычислим давление, оказываемое на эту площадку.

 

 

При каждом соударении молекула, движущаяся перпендикулярно площадке, передает ей импульс

m0v–(–m0v)=2m0v, (2.21)

где m0 – масса молекулы, v – ее скорость. За время  t площадки  S достигнут только те молекулы, которые заключены в объеме цилиндра с основанием  S и высотой vt (рисунок 2.5). Число этих молекул равно nSvt (n – концентрация молекул).

Необходимо учитывать, что реально молекулы движутся к площадке S под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент времени вдоль каждого из них движется 1/3 молекул. Половина этих молекул (т.е. 1/6 часть) движется вдоль данного направления в одну сторону, а вторая половина – в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку  S будет 1/6 nSvt. При столкновении с площадкой эти молекулы передадут ей импульс

P = 2m0v1/6nSvt = 1/3nm0v2St (2.22)

Тогда давление газа, оказываемое им на стенку сосуда,

P =P/(tS) = 1/3nm0v2. (2.23)

Если газ в объеме V содержит N молекул, движущихся со скоростями v1, v2,..., vN, то целесообразно рассматривать среднюю квадратичную скорость

<vкв>= , (2.24)

характеризующую всю совокупность молекул газа. Уравнение (2.23) с учетом (2.24) примет вид

p = 1/3nm0<vКВ>2. (2.25)

Выражение (2.25) называется основным уравнением молекулярно-кинетической теории идеальных газов.

PVm = RT  

Уравнению

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона – Менделеева.

В молекулярно-кинетической теории пользуются моделью идеального газа, согласно которой считают, что:

1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Модель идеального газа можно использовать при изучении реальных газов в условиях, близких к нормальным (например, кислород и гелий), а также при низких давлениях и высоких температурах.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)