АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Параграф 4. Теорема об изменении количества движения МТ

Читайте также:
  1. S-M-N-теорема, приклади її використання
  2. А — при двустороннем движении судов; б — при одностороннем движения
  3. Анализ движения дебиторской и кредиторской задолженности
  4. Анализ движения денежной наличности
  5. Анализ движения денежных средств
  6. Анализ движения денежных средств прямым и косвенным методом
  7. Анализ движения и технического состояния основных средств
  8. Анализ движения основных фондов
  9. Анализ наличия и движения основных средств
  10. Анализ остатков и движения денежной наличности
  11. Анализ причин ДТП и меры, повышающие безопасность движения.
  12. Анализ случаев нарушения безопасности движения с установлением виновных и конкретных нарушений правил и порядка работы

Общие теоремы динамики МТ

Основной закон динамики (1.1) можно представить в виде:

(1.29)

Здесь – элементарный импульс силы, действующей на МТ.

Соотношение (1.29) выражает теорему об изменении количества движения МТ в дифференциальной форме.

Теорема: Дифференциал количества движения МТ равен элементарному импульсу силы, действующей на МТ.

Проинтегрировав соотношение (1.29) с учетом начальных условий: при t = 0 , получим эту теорему в конечной интегральной форме:

. (1.30)

В (1.30) называется импульсом силы за конечный промежуток времени:

. (1.31)

Теорема: Изменение количества движения МТ за конечный промежуток времени равно импульсу силы, действующей на МТ за тот же промежуток времени.

Проектируя на оси декартовой системы координат равенство (1.30), получим эту теорему в скалярной форме:

,

, (1.32)

,

где Sx, Sy, Sz – проекции импульса силы на оси декартовой системы координат.

Теорема: Изменение проекции количества движения МТ на какую-либо ось за конечный промежуток времени равно проекции на эту же ось импульса силы, действующей на МТ за тот же промежуток времени – соотношение (1.32).

Следствия: если =0, то , т. е. МТ движется таким образом, что ее скорость остается постоянной;

если Fx=0, то Vx = V, т. е. МТ движется таким образом, что проекция ее скорости на ось х остается постоянной.

Первое из полученных соотношений находится в полном соответствии с первым законом динамики – законом инерции и подтверждает, что при отсутствии силы МТ движется равномерно и прямолинейно.


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)