Дифракция света на одной щели
Пусть в непрерывном экране есть щель: ширина щели , длина щели (перпендикулярно плоскости листа) (рис. 9.5). На щель падают параллельные лучи света. Для облегчения расчета считаем, что в плоскости щели АВ амплитуды и фазы падающих волн одинаковы.
Рис. 9.5
Разобьем щель на зоны Френеля так, чтобы оптическая разность хода между лучами, идущими от соседних зон, была равна .
Если на ширине щели укладывается четное число таких зон, то в точке (побочный фокус линзы) будет наблюдаться минимум интенсивности, а если нечетное число зон, то максимум интенсивности:
| – условие минимума интенсивности;
| (9.4.1)
|
|
| – условие максимума интенсивности
| (9.4.2)
|
| | | | | | | | Картина будет симметричной относительно главного фокуса точки . Знак плюс и минус соответствует углам, отсчитанным в ту или иную сторону.
Интенсивность света . Как видно из рис. 9.5, центральный максимум по интенсивности превосходит все остальные.
Рассмотрим влияние ширины щели.
Т.к. условие минимума имеет вид , отсюда
| .
| (9.4.3)
|
| Из этой формулы видно, что с увеличением ширины щели b положения минимумов сдвигаются к центру, центральный максимум становится резче.
При уменьшении ширины щели b вся картина расширяется, расплывается, центральная полоска тоже расширяется, захватывая все большую часть экрана, а интенсивность ее уменьшается. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | Поиск по сайту:
|