АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Модель горячего большого взрыва

Читайте также:
  1. XXII. Модель «К» и отчаянный риск
  2. А) Модель Хофстида
  3. Адаптивная модель
  4. Адаптивная полиномиальная модель первого порядка
  5. Альтернативні моделі розвитку. Центральна проблема (ринок і КАС). Азіатські моделі. Європейська модель. Американська модель
  6. Анализ финансовой устойчивости. Модель финансовой устойчивости
  7. Англо-американская модель, оплата труда руководства верхнего уровня
  8. Англо-саксонская модель местного самоуправления
  9. Б. Математическая модель транспортной задачи.
  10. Базовая модель Солоу (без технологического прогресса).
  11. Базовая модель структурного построения производственных систем
  12. Базовая модель управления персоналом

Чтобы объяснить, о чем шла речь в моем докладе, я должен сначала изложить общепринятую историю Вселенной в соответствии с тем, что известно под названием «модель горячего Большого Взрыва». Она предполагает, что Вселенная в период от нынешнего времени до Большого Взрыва описывается моделью Фридмана. В таких моделях расширение Вселенной сопровождается снижением температуры материи и интенсивности излучения. Поскольку температура — это всего лишь мера средней энергии частиц, охлаждение Вселенной оказывает основополагающее влияние на содержащуюся в ней материю. При очень высоких температурах частицы движутся с такой значительной скоростью, что избегают взаимного притяжения, обусловленного ядерными или электромагнитными силами. Однако следует ожидать, что при охлаждении частицы, которые притягиваются друг к другу, начнут «слипаться».

В момент Большого Взрыва Вселенная имела нулевые размеры, а значит, была бесконечно горячей. Но по мере расширения температура ее излучения должна была уменьшаться. Через одну секунду после Большого Взрыва она упала до десяти миллиардов градусов. Это примерно в тысячу раз больше температуры в центре Солнца и соответствует температуре, возникающей при взрыве водородной бомбы. В это время Вселенная состояла в основном из фотонов, электронов, нейтрино и соответствующих им античастиц, а также некоторого числа протонов и нейтронов.

По ходу расширения и остывания Вселенной скорость образования электронов и электронных пар при столкновениях частиц должна была стать ниже той скорости, с которой они разрушаются при аннигиляции. Так что большая часть электронов и антиэлектронов должна была аннигилировать, порождая все больше фотонов и оставляя совсем мало электронов.

Примерно через сто секунд после Большого Взрыва температура должна была упасть до одного миллиарда градусов,

что соответствует температуре внутри самых горячих звезд. При такой температуре протоны и нейтроны уже не обладают достаточной энергией, для того чтобы избежать взаимного притяжения, обусловленного сильным ядерным взаимодействием. Они начинают объединяться, формируя ядра атомов дейтерия (тяжелого водорода), состоящие из одного протона и одного нейтрона. Присоединяя другие протоны и нейтроны, ядра дейтерия становятся ядрами гелия, содержащими два протона и два нейтрона. Образуется и небольшое количество ядер более тяжелых элементов, лития и бериллия.

Можно подсчитать, что, согласно модели горячего Большого Взрыва, примерно четверть протонов и нейтронов должна превратиться в ядра гелия, а также в небольшое количество тяжелого водорода и других элементов. Оставшиеся нейтроны распадаются на протоны, представляющие собой ядра атомов обычного водорода. Эти предсказания прекрасно согласуются с наблюдениями.

Модель горячего Большого Взрыва также предсказывает, что мы должны иметь возможность наблюдать излучение, сохранившееся с ранних, «горячих», этапов развития Вселенной. Однако из-за постоянного расширения Вселенной температура этого начального излучения должна была понизиться до величины, лишь на несколько градусов превышающей абсолютный нуль. Этим объясняется существование микроволнового фонового излучения, обнаруженного Пензиасом и Уилсоном в 1965 г. Поэтому мы почти уверены, что располагаем верной картиной случившегося, по крайней мере на протяжении от нынешнего времени до момента через секунду после Большого Взрыва. Всего лишь через несколько часов после Большого Взрыва формирование ядер гелия и других элементов должно было прекратиться. А затем на протяжении миллиона лет или около того Вселенная должна была лишь продолжать расширяться без каких-либо особенных

событий. И вот, когда температура упала до нескольких тысяч градусов, электроны и ядра перестали обладать энергией, необходимой для противодействия электромагнитному притяжению между ними. Они начали объединяться в атомы.

Вселенная же в целом продолжала расширяться и остывать. Однако в областях с плотностью немного выше средней расширение замедлялось повышенным гравитационным притяжением. Это должно было в конце концов остановить расширение в некоторых областях и вызвать там сжатие. По мере сжатия гравитационная тяга материи за пределами этих областей могла привести к тому, что они начали медленно вращаться. Чем меньше становилась сжимающаяся область, тем быстрее она вращалась (так фигуристы увеличивают частоту своего вращения, прижимая руки к телу). Наконец, когда область сделалась достаточно малой, частота вращения стала достаточной, чтобы уравновесить гравитационное притяжение. Таким образом возникли вращающиеся дисковидные галактики.

С течением времени газ в галактиках распался на облака, которые сжимаются под воздействием собственного притяжения. При сжатии газа он нагревается до температур, запускающих ядерные реакции. Водород превращается в гелий, и выделяющееся тепло повышает давление, чем останавливает дальнейшее сжатие облаков. В таком состоянии они могут оставаться долгое время, как звезды, подобные нашему Солнцу, сжигая водород, который превращается в гелий, и излучая энергию в виде тепла и света.

Чем массивнее звезды, тем горячее они должны быть, чтобы сопротивляться своему мощному гравитационному притяжению. А это настолько сильно ускоряет термоядерные реакции, что такие звезды сжигают весь свой водород за сравнительно короткое время — примерно за сто миллионов лет. Затем они слегка сжимаются и, разогреваясь дальше, начинают преобразовывать гелий в более тяжелые химические элементы, такие как углерод и кислород. Это, однако, высвобождает не намного больше энергии, так что наступает кризис, который я описал в лекции о черных дырах.

Что происходит дальше, не совсем ясно, но представляется вероятным, что центральные области звезды должны сжаться до сверхплотного состояния, характерного для нейтронных звезд или черных дыр. Внешнюю оболочку может разметать так называемая вспышка сверхновой — чудовищный взрыв, сияние которого превосходит яркость всех остальных звезд в галактике. Некоторые из более тяжелых элементов, образовавшихся в конце жизненного цикла звезды, будут выброшены назад в галактический газ. Они станут сырьем для следующего поколения звезд.

Наше Солнце содержит примерно 2% таких более тяжелых элементов, так как это звезда второго или третьего поколения. Оно сформировалось около пяти миллиардов лет назад из облака вращающегося газа, которое содержало остатки более ранних сверхновых. Большая часть газа в этом облаке пошла на образование Солнца или была выброшена вовне. Однако небольшое количество более тяжелых элементов объединилось в небесные тела — планеты, подобные Земле, — которые обращаются теперь вокруг Солнца.

 

Открытые вопросы

Картина Вселенной, в начале своего развития очень горячей и остывавшей по мере расширения, хорошо согласуется с данными наблюдений, которые мы имеем сегодня. Тем не менее она оставляет без ответа ряд важных вопросов. Во-первых, почему новорожденная Вселенная была такой горячей? Во-вторых, почему Вселенная столь однородна

в больших масштабах, почему она выглядит одинаково из всех точек пространства и во всех направлениях?

В-третьих, почему в самом начале скорость расширения Вселенной была столь близка к критической, что едва позволяла избежать немедленного обратного сжатия? Если бы через секунду после Большого Взрыва эта скорость была меньше всего на миллиардную часть от миллиардной доли, Вселенная тут же пережила бы коллапс, не достигнув наблюдаемых ныне размеров. С другой стороны, будь скорость расширения в ту секунду на столь же ничтожную долю больше требуемой, Вселенная расширилась бы настолько, что сейчас была бы практически пустой.

В-четвертых, несмотря на однородность Вселенной в больших масштабах, она содержит локальные скопления материи в виде звезд и галактик. Предполагается, что они возникли за счет небольших различий плотности вещества в разных областях Вселенной на ранних стадиях ее развития. Но из-за чего возникли эти различия плотности?

Общая теория относительности сама по себе не может объяснить эти особенности и ответить на эти вопросы. А всё потому, что она предсказывает: Вселенная началась с бесконечной плотности, с сингулярности Большого Взрыва. В сингулярности, в этой особой точке, общая теория относительности и все известные нам физические законы не действуют. Нельзя предсказать, что выйдет из сингулярности. Как я уже объяснял, это означает, что мы вправе исключить из теории все события, которые происходили до Большого Взрыва, потому что они не возымеют влияния на то, что доступно нашему наблюдению. Пространство-время имеет границу — начало в момент Большого Взрыва. Почему Вселенная должна была начаться с Большого Взрыва именно тем образом, который привел ее к состоянию, наблюдаемому нами сегодня? Почему она столь однородна и расширяется именно с критической скоростью, позволяющей избежать коллапса? Нам стало бы легче, если бы мы смогли показать, что небольшой набор различных начальных конфигураций Вселенной мог привести ее к современному состоянию.

Если дело обстоит именно так, Вселенная, которая развилась из некоторых случайных начальных условий, должна содержать ряд областей, сходных с теми, что мы наблюдаем. Кроме того, могли существовать совершенно иные области. Однако они, вероятно, не подходят для формирования галактик и звезд. Это весьма существенное обстоятельство для развития разумной жизни, по крайней мере такой, какая известна нам. Так что в этих областях не может быть существ, способных увидеть, что они, эти области, иные.

Говоря о космологии, следует учитывать принцип отбора, состоящий в том, что мы населяем область Вселенной, пригодную для развития разумной жизни. Это весьма простое и очевидное соображение иногда называют антропным принципом. С другой стороны, представьте, что начальное состояние Вселенной должно быть выбрано с большой тщательностью, чтобы привести к тому, что мы видим вокруг себя. Тогда во Вселенной вряд ли сыскалось бы место, где могла возникнуть жизнь.

В описанной выше модели горячего Большого Взрыва на ранних стадиях развития Вселенной не имеется периода времени, достаточного для передачи тепла от одной области к другой. Это означает, что различные области Вселенной должны были иметь абсолютно одинаковую начальную температуру, чтобы это согласовалось с тем фактом, что температура фонового микроволнового излучения одинакова во всех направлениях, куда бы мы ни посмотрели. Кроме того, начальная скорость расширения должна была выбираться с большой точностью, чтобы Вселенная не схлопнулась к настоящему моменту. Следовательно, начальное состояние

Вселенной в самом деле должно быть выбрано крайне тщательно, если модель горячего Большого Взрыва справедлива на отрезке от нынешнего момента и вплоть до самого начала времени. Почему Вселенная зародилась именно так, очень трудно объяснить чем-либо иным, кроме воли Бога, который намеревался сотворить существ, подобных нам.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)