Операции над множествами
Объединение двух множеств А и В – это новое множество, элементами которого являются элементы, принадлежащие множеству А или множеству В. Обозначение: А В.
А В={x| х А или х В}.
Пересечение двух множеств А и В – это новое множество, элементами которого являются элементы, принадлежащие множеству А и множеству В. Обозначение: А В.
А В={x| х А и х В}.
Разность двух множеств А и В – это новое множество, элементами которого являются элементы, принадлежащие множеству А и не принадлежащие множеству В. Обозначение: А \ В.
А \ В={x| х А и х В}.
Обычно элементы множеств выбираются из некоторого достаточно широкого множества U, которое называется универсум. В связи с этим понятием можно ввести операцию дополнение.
Дополнением множества А называется множества, которое состоит из элементов универсума, не принадлежащих множеству А. Обозначение: .
=U \ A или ={x| х А и х U}.
Пример: U={1, 2, 3, 4, 5, 6, 7}, A={1, 2, 3, 4, 5}, В={2, 4, 6}.
А В = {1, 2, 3, 4, 5, 6} А В = {2, 4} А \ В = {1, 3, 5}
В \ А = {6} = {6, 7} = {1, 3, 5, 7}
Для наглядного изображения соотношений между множествами и изображения результатов операций над множествами используют диаграммы Эйлера.
Пример:
B A А В А В А \ В 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | Поиск по сайту:
|