Прямое произведение множеств
Пусть A и B – два множества. Прямым (декартовым) произведением двух множеств A и B называется множество упорядоченных пар, в котором первый элемент каждой пары принадлежит A, а второй принадлежит B.
A B = {(a, b) | a A, b B}.
Пример: точка на плоскости может быть задана упорядоченной парой координат, т.е. двумя точками на координатных осях. Т.о., R2 = R R. Метод координат ввел в употребление Рене Декарт (1596 - 1650), отсюда и название – «декартово произведение».
Степенью множества А называется его прямое произведение самого на себя.
An =
Соответственно, A1 = A, A2 = A A и вообще An = A An-1.
Теорема: |A B| = |A| |B|.
Доказательство: первый компонент упорядоченной пары можно выбрать |А| способами, второй - |B| способами. Таким образом, всего имеется |A| |B| различных упорядоченных пар.
Следствие: |An| = |A|n. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | Поиск по сайту:
|