АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Правило суммы. Задача: на блюде лежат 5 яблок и 2 груши

Читайте также:
  1. V2: Спектр атома водорода. Правило отбора
  2. Але монетарне правило не враховує мінливості швидкості обігу грошей та чутливості попиту до зміни процентної ставки.
  3. В/ правило Копа; г/ правило Бергмана.
  4. Виды светофоров и правило их установки
  5. Вопрос 32: «Домашнее хозяйство как экономический субъект. Основные категории и законы потребления. Равновесие потребителя и правило максимизации полезности»
  6. Вопрос№10 Явление электромагнитной индукции. Правило Ленца
  7. Второе правило
  8. Второе правило
  9. Глава VI. Правило фаз.
  10. Гондурасе, Панаме, Парагвае и, как правило, называются На-
  11. Доход и прибыль фирмы. Общий, средний, предельный доход. Экономическая и бухгалтерская прибыль. Правило максимизации прибыли.
  12. Доход и прибыль фирмы. Правило максимизации прибыли.

Задача: на блюде лежат 5 яблок и 2 груши. Сколькими способами можно выбрать один плод?

Решение: плод можно выбрать семью способами (5+2=7).

Если некоторый элемент a может быть выбран из множества элементов m способами, а другой элемент b может быть выбран n способами, причем любой выбор элемента b отличен от любого выбора элемента a, то выбрать либо a, либо b можно m + n способами.

На языке теории множеств это правило формулируется следующим образом:

Теорема1: если пересечение конечных множеств пусто, то число элементов в их объединении равно сумме чисел элементов множеств А и В.

А В = | А В | = |A| + |B|

Разберем случай, когда множества могут иметь непустые пересечения.

Теорема2: для любых конечных множеств верно равенство:

| А В | = |A| + |B| - | А В |.

Задача: среди студентов первого курса 30 человек имеют дома компьютер, 35 – учебник по информатике; оказалось, что 10 студентов имеют и компьютер, и учебник по информатике. Сколько студентов на первом курсе?

Решение: пусть множество А составляют студенты, имеющие компьютер, множество В – студенты, имеющие учебник по информатике; по условию задачи:

|A| = 30 |B| = 35 | А В | = 10 | А В | =?

| А В | = |A| + |B| - | А В | = 30 + 35 – 10 = 55.



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)