Сочетания без повторений
Сочетаниями называют комбинации, составленные из n различных элементов по k (k =< n) элементов, которые отличаются хотя бы одним элементом. Сочетания обозначаются: Cnk C - первая буква французского слова combinasion - сочетание.
Составим из n элементов всевозможные сочетания по k элементов в каждом. Их будет Cnk. Внутри каждого сочетания, состоящего из k элементов, образуем всевозможные комбинации, учитывающие порядок следования в них элементов. Таких комбинаций будет Pk, т.к. мы в нашем сочетании образовываем перестановки. Всего различных комбинаций из n элементов по k в каждой, отличающихся друг от друга либо составом (элементами), либо порядком их следования, будет Cnk • Pk. Но такие комбинации называются размещениями. Таким образом, Ank = Cnk • Pk, тогда:
.
Задача: в шахматном турнире участвует 7 человек; сколько партий будет сыграно, если между любыми двумя участниками должна быть сыграна партия?
Решение: имеем сочетания без повторений из 7 элементов по 2; их число: . 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | Поиск по сайту:
|