Свойства функций, непрерывных на отрезке
Теорема 1 (об ограниченности непрерывной функции). Если функция f(x) непрерывна на отрезке [a, b], то она ограничена на этом отрезке, т.е. существует такое число C> 0, что x [a, b] выполняется неравенство |f(x)| ≤ C.
Теорема 2 (Вейерштрасс). Если функция f(x) непрерывна на отрезке [a, b], то она достигает на этом отрезке своего наибольшего значения M и наименьшего значения m, т.е. существуют точки α, β [a, b] такие, что m = f(α) ≤ f(x) ≤ f(β) = M для всех x [a, b]
Теорема 3 (о существовании нуля). Если функция f(x) непрерывна на отрезке [a, b] и на концах отрезка принимает ненулевые значения разных знаков, то на интервале (a, b) найдется по крайней мере одна точка ξ в которой f(ξ) = 0.
Геометрический смысл теоремы состоит в том, что график функции, удовлетворяющей условиям теоремы, обязательно пересечет ось OX
Теорема о промежуточном значении (или Теоре́ма Больца́но — Коши́) утверждает, что если непрерывная функция, определённая на вещественном интервале, принимает два значения, то она принимает и любое значение между ними.
Пусть дана непрерывная функция на отрезке Пусть также и без ограничения общности предположим, что Тогда для любого существует такое, что . 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Поиск по сайту:
|