АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Дифференциальные уравнения. Задача 20. Найти общее решение дифференциального уравнения и частное решение, удовлетворяющее начальному условию при

Читайте также:
  1. V2: ДЕ 54 - Дифференциальные уравнения, допускающие понижение порядка
  2. V2: ДЕ 57 - Фундаментальная система решений линейного однородного дифференциального уравнения
  3. V2: Применения уравнения Шредингера
  4. V2: Уравнения Максвелла
  5. VI Дифференциальные уравнения
  6. Алгебраические уравнения
  7. Алгоритм составления уравнения химической реакции
  8. Билет 11. Различные уравнения прямой в пространстве. Матрица перехода к новому базису.
  9. Билет 12 Различные уравнения прямой на плоскости, геометрический смысл параметров. Формула преобразования координат вектора при переходе к новому базису
  10. Билет10 Различные уравнения плоскости, угол между плоскостями. Вид матрицы линейного оператора в базисе из собственных векторов.
  11. Векторное, канонические и параметрические уравнения прямой.
  12. Виды уравнений прямой: векторное, параметрическое и каноническое уравнения прямой в пространстве.

Задача 20. Найти общее решение дифференциального уравнения и частное решение, удовлетворяющее начальному условию при .

20.1. .

20.2. .

20.3. .

20.4. .

20.5. .

20.6. .

20.7. .

20.8. .

20.9. .

20.10. .

 

Задача 21. Найти общее решение дифференциального уравнения

21.1. . 21.2. .

21.3. . 21.4. .

21.5. . 21.6. .

21.7. . 21.8. .

21.9. . 21.10. .

 

Задача 22. Найти общее решение дифференциального уравнения и частное решение, удовлетворяющее начальным условиям при .

22.1. .

22.2. .

22.3. .

22.4. .

22.5. .

22.6. .

22.7. .

22.8. .

22.9. .

22.10. .

 

Задача 23. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям .

23.1.

23.2.

23.3.

23.4.

23.5.

23.6.

23.7.

23.8.

23.9.

23.10.

 

Ряды

Задача 24. Исследовать сходимость числового ряда .

24.1. . 24.2. .

24.3. . 24.4. .

24.5. . 24.6. .

24.7. . 24.8. .

24.9. . 24.10. .

 

Задача 25. Найти интервал сходимости степенного ряда .

25.1. . 25.2. .

25.3. . 25.4. .

25.5. . 25.6. .

25.7. . 25.8. .

25.9. . 25.10. .

 

Задача 26. Написать три первых члена степенного ряда по заданному общему члену , где ; найти интервал сходимости ряда и исследовать его сходимость на концах этого интервала.

26.1. 26.2. 26.3. 26.4. 26.5.

26.6. 26.7. 26.8. 26.9. 26.10.


Задача 27. Вычислить определенный интеграл с точностью до 0,001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировав его почленно.

27.1. . 27.2. .

27.3. . 27.4. .

27.5. . 27.6. .

27.7. . 27.8. .

27.9. . 27.10.

Задача 28. Выразить определенный интеграл в виде сходящего ряда, используя ряд Маклорена для подынтегральной функции. Найти приближенное значение этого интеграла с точностью до .

28.1. 28.2. 28.3.

28.4. 28.5.

Выразить определенный интеграл в виде сходящегося ряда, используя ряд Маклорена для подынтегральной функции. Найти приближенное значение этого интеграла с точностью до 0,001.

28.6. 28.7. 28.8.

28.9. 28.10.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.015 сек.)