|
||||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Пример прикладных задачЗадача 1. Производственная задача Фирма хочет наладить производство некоторых товаров с тем, чтобы от их реализации получалась max прибыль с учетом ограниченности ресурсов Введем обозначения: n – число различных товаров m – число различных товаров
Построенная математическая модель представляет собой задачу линейного программирования. Задача 2. О строительстве зрительного зала Необходимо спроектировать зрительный зал в здании, имеющем форму полу эллипсоида max объема в форме прямоугольника, боковые стены которого должны быть плоскостям симметрии полу эллипсоида. a, b, c – размеры полу эллипсоида x – вершина прямоугольника (принадлежащая полу эллипсоида)
Тогда объем
2е т.к. вершина должна лежать на полу эллипсоиде Мы построили задачу типа классических задач Лагранжа – задача нелинейного программирования
Под стандартной формой задачи математического программирования понимают
Под канонической формой понимают
Поиск по сайту: |
|||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.883 сек.) |