АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Требования к уровню подготовки учащихся. В результате изучения алгебры ученик должен

Читайте также:
  1. I. Общие требования безопасности.
  2. I. Перечень вопросов и тем для подготовки к экзамену
  3. I. Психологические условия эффективности боевой подготовки.
  4. II. Общие требования
  5. II. Требования безопасности перед началом работы
  6. II. Требования к оформлению контрольной работы
  7. II. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КУРСОВОЙ РАБОТЫ
  8. III Требования к результатам освоения содержания дисциплины
  9. III. Требования к проведению санитарно-противоэпидемических (профилактических) мероприятий в природных очагах чумы
  10. III. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ СОДЕРЖАНИЯ ДИСЦИПЛИНЫ
  11. III. Требования к результатам освоения содержания дисциплины
  12. III. Требования охраны труда во время работы

В результате изучения алгебры ученик должен

Знать/понимать

· существо понятия математического доказательства; приводить примеры доказательств;

· существо понятия алгоритма; приводить примеры алгоритмов;

· как используются математические формулы и уравнения; примеры их применения для решения математических и практических задач;

· как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания.

· как потребности практики привели математическую науку к необходимости расширения понятия числа;

· вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

· смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации

Алгебра

Уметь

· составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

· выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

· применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

· решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

· решать линейные и квадратные неравенства с одной переменной и их системы,

· решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

· изображать числа точками на координатной прямой;

· определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

· распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

· находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

· определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

· описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

· выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;

· моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;

· описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;

· интерпретации графиков реальных зависимостей между величинами.

Элементы логики, комбинаторики,
статистики и теории вероятностей

Уметь

· проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

· извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

· решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;

· вычислять средние значения результатов измерений;

· находить частоту события, используя собственные наблюдения и готовые статистические данные;

· находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

· выстраивания аргументации при доказательстве и в диалоге;

· распознавания логически некорректных рассуждений;

· записи математических утверждений, доказательств;

· анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

· решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

· решения учебных и практических задач, требующих систематического перебора вариантов;

· сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

· понимания статистических утверждений.

В основе реализации рабочей программы лежит использование следующих педагогических технологий:

— личностно ориентированной (педагогика сотрудничества), позволяющей увидеть уровень обученности каждого ученика и своевременно подкорректировать ее;

— технологии уровневой дифференциации, позволяющей ребенку выбирать уровень сложности;

— информационно-коммуникационной технологии, обеспечивающей формирование учебно-познавательной и информационной деятельности учащихся.

В системе уроков можно выделить следующие виды: урок изучения нового материала, закрепления изученного материала, урок использования полученных знаний, комбинированный, урок проверки усвоения материала, обобщения и систематизации знаний.

При этом используются различные формы: лекция, практикум по решению задач, зачет, консультация, защита проектов.

 


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)