|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Схемы печных и нетиповых подстанций
Индивидуальность крупных электроприемников (потребителей) вызывает необходимость разработки оригинальных схем электроснабжения и подстанций 5УР, 4УР. Отметим, что это проблема практически отсутствует для мини- и мелких предприятий, электроснабжение которых осуществляется на напряжении ниже 1 кВ. Схемы ГПП и РП, отличающиеся от подстанций, питающих спокойную нагрузку, можно разделить на схемы, предназначенные для электроснабжения дуговых сталеплавильных печей, потребителей с резко-переменной нагрузкой отдельного электроприемника (группы) с большой единичной мощностью (по условиям пуска, например, определяющего трансформатор и присоединение), потребителей с особыми требованиями по преобразованию тока (электролиз, сварка), качеству электроэнергии и надежности в различных технологических, ремонтных и аварийных режимах. Ключевым моментом в разработке таких схем является обеспечение качества электроэнергии (гл. 10) и компенсация реактивной мощности (гл. 11). Нелинейные нагрузки (вентильные преобразователи, дуговые печи и др.) работают, как правило, с низким коэффициентом мощности (0,4—0,8), поэтому необходима компенсация реактивной мощности. Колебания нагрузки дуговых сталеплавильных печей, особенно колебания реактивной мощности, вызывают значительные колебания напряжения в питающей сети, которые тем больше, чем больше мощность печного трансформатора и меньше мощность КЗ в точке присоединения дуговой печи. Особенно большие колебания нагрузки печи и наибольшие снижения напряжения происходят при эксплуатационных КЗ, например при погружении электродов в расплавленный металл. Значения колебаний тока при этом могут достигать 1,5— 2 I ном дуговой сталеплавильной печи для большой емкости и 2,5—3,5 Iном, для печей средней и малой емкости, что имеет важное значение для определения мощности сетевых трансформаторов и согласований схем с энергосистемой. В отличие от дуговых сталеплавильных печей колебания нагрузки прокатных станов могут рассматриваться как строго цикличные. Значения средней, эффективной и пиковой активной и реактивной нагрузок определяются мощностью прокатных станов и их отдельных клетей. Периодичность (цикл) работы определяется технологическими параметрами, в основном размерами заготовки и размерами конечной продукции. Фронт наброса реактивной мощности DQ / Dt для различных станов различен и соответствует приближенно следующим величинам: для
блюмингов и слябингов — до 200, для непрерывных станов горячего проката - до 400, для станов холодного проката - до 2000 Мвар/с. Эти значения играют определяющую роль при выборе компенсирующих устройств по их быстродействию. Скорости набросов активной мощности несколько меньше, чем скорости набросов реактивной мощности. Расчетная реактивная нагрузка в сетях 6—10 кВ промышленных предприятий Qn слагается из расчетной нагрузки приемников 6—10 кB Qрп; нескомпенсированной нагрузки сети до 1 кВ, питаемой через трансформаторы цехов QТ; потерь реактивной мощности D Q в сети 6-10 кВ, особенно в трансформаторах и реакторах:
Зарядная мощность D Q зар линий распределительной сети в часы максимума нагрузки приближенно равна потерям D Q л в индуктивности линий, и поэтому D Q зар и D Q л взаимно исключаются. Расчет оптимальной мощности конденсаторов производится для режима наибольших нагрузок. При выборе конденсаторов, сделав допущение о незначительной длине линий на предприятии, можно представить все предприятие как узел сети 6-10 кВ, к которому подключены реактивная нагрузка Q. В общем случае называют пять типов источников реактивной мощности: синхронные двигатели 6-10 кВ (Q СД), синхронные компенсаторы (Q СК), синхронные генераторы ТЭЦ (Q тэц), энергосистема (Qэ1), батареи высокого напряжения (Q БК). Баланс реактивной мощности в узле 6-10 кВ промышленного предприятия в общем случае будет выражаться следующим соотношением:
Входная реактивность мощности Q Э1 задается энергосистемой как экономически оптимальная реактивная мощность, которая может быть передана предприятию в период наибольшей нагрузки энергосистемы. Выражение (4.12) обязательно для 6УР при подключении к энергосистеме. При электроснабжении производства (цеха) с нелинейной нагрузкой вопросы обеспечения качества электроэнергии и компенсации реактивной мощности решаются локально на шинах подстанции 5УР (4УР), где рассчитывается реактивная нагрузка (4.11) и определяется необходимость установки фильтров. Это делает схему и компоновку подстанций нетиповой, а сам процесс принятия технического решения творческим. На рис. 4.6 показана обобщенная однолинейная схема подстанции, питающей вентильную нагрузку, с параллельно установленными на шинах подстанции силовыми фильтрами 5-й гармоники.
Для систем электроснабжения дуговых сталеплавильных печей ДСП рекомендуется следующее: печные трансформаторы должны оснащаться переключающимися устройствами, работающими под нагрузкой и имеющими большой механический и коммутационный ресурс; оперативные и оперативно-защитные выключатели должны иметь необходимый ресурс работы (не менее 20 тыс. операций); оперативные выключатели должны взаимно резервироваться, при установке их на печной подстанции должно предусматриваться индивидуальное резервирование, при установке на ПГВ, как правило, - групповое; сетевые трансформаторы должны выбираться с учетом динамического характера электрической нагрузки ДСП; с целью снижения мощности силовых трансформаторов и повышения устойчивости работы ДСП должна по возможности предусматриваться их параллельная работа; сетевые трансформаторы ДСП, как правило, должны подключаться к питающей сети в точках с наибольшим значением мощности КЗ с целью снижения влияния ДСП на питающую сеть. Для установки ДСП в необходимых случаях должны предусматриваться установки компенсации реактивной мощности, совмещающие в себе функции по улучшению качества электроэнергии в питающей сети: тип, мощность и состав компенсирующего устройства должны выбираться с учетом параметров системы электроснабжения на основании технико-экономического сравнения схем электроснабжения и способов компенсации реактивной мощности. Подстанции, питающие установки ДСП, должны размещаться, как правило, в непосредственной близости от печей. При разработке схемы мощные электроприемники с ударным характером нагрузки не должны вызывать недопустимой перегрузки питающих трансформаторов как по нагреву, так и по условиям динами-
ческих воздействий ударных нагрузок. Целесообразно подключение электроприемников с усложненными режимами работы в точках системы электроснабжения с наибольшим значением мощности КЗ. Применение средств ограничения токов КЗ в сетях с такими нагрузками следует производить только в пределах необходимости для обеспечения надежной работы коммутационных аппаратов и электрооборудования, не создавая больших запасов отключающей способности, термической и динамической стойкости аппаратов. Мощность ДСП, сварки, прокатных станов с питанием через преобразовательные агрегаты растет в узле быстрее, чем мощность других потребителей. Поэтому ограничение влияния специфических нагрузок повышением КЗ недостаточно. Для предварительной оценки допустимости подключения ДСП к питающей сети без принятия специальных мер рекомендуется принимать следующее значение мощности КЗ: где S п т - мощность печного трансформатора (выбирается не электриками). Для печей с удельной мощностью 450—800 кВ • А/т мощность КЗ может быть принята равной 70SП.Т. Мощность сетевого трансформатора для питания группы из п ДСП одинаковой мощности где SС.Т — мощность сетевого трансформатора, определенная для одиночной ДСП. Более широкие возможности применения схем электроснабжения, повышающих качество электроэнергии в системах электроснабжения промпредприятий, создаются путем рационального секционирования. К секционированным схемам относятся (рис. 4.7—4.9): отдельные глубокие вводы для резкопеременной и несинусоидальной нагрузок. Например, на отдельные секции главной понижающей подстанции выделяются вентильные приводы, а спокойная нагрузка подключается на другие секции ГПП; схемы главных понижающих подстанций на напряжении 6—10 кВ с трансформаторами с расщепленными вторичными обмотками или сдвоенными реакторами с четырьмя или большим количеством секций для раздельного питания спокойных, например групп синхронных двигателей насосов, и сгруппированных специфических нагрузок. Главные трансформаторы ГПП могут включаться временно на параллельную работу включением секционного выключателя на стороне 6—10 кВ, когда это допустимо по токам КЗ и необходимо, например в период пуска крупных электродвигателей.
Наиболее широкое применение, а особенно для предприятий средней мощности, находят схемы с расщепленными обмотками трансформаторов ГПП (рис. 4.9) или со сдвоенными реакторами (рис. 4.10). В сдвоенном реакторе падение напряжения в каждой секции обмотки составляет D U» Iобм xl • 0,5, где I1 = I 2 = I обм - токи в секциях обмотки реактора; хL — индуктивное сопротивление обмотки реактора; КМ = M/L» 0,5 — коэффициент взаимоиндукции между секциями обмотки сдвоенного реактора. Как видно из формулы, колебания напряжения на секциях со спокойной нагрузкой под влиянием колебаний на этой секции от резко-переменной нагрузки будут меньше, чем при объединении их на одну секцию шин. При строительстве крупных электросталеплавильных цехов (производств) начинают сооружать отдельные печные подстанции, на которых устанавливаются отдельные сетевые трансформаторы и сборные шины (рис. 4.11). Это позволяет сохранять питание ДСП при различ-
ных аварийных и ремонтных режимах работы сетевых трансформаторов. Рисунок 4.11 иллюстрирует: соотношение мощности сетевых и печных трансформаторов; схему подключения оперативных выключателей и выключателей, осуществляющих защиту; сечение кабельной перемычки и другие элементы, изображенные в рабочих чертежах (рабочей документации) и отсутствующие при разработке собственно схемы для получения технических условий или для ТЭО (проекта).
4.5. Компоновки открытых и закрытых распределительных устройств (подстанций)
Определение параметров электропотребления на разных уровнях систем электроснабжения, выбор источников питания, разработка схемы электроснабжения, выбор силовых трансформаторов, количества и места расположения подстанций 5УР и 4УР дают возможность скомпоновать каждое подстанционное ОРУ - открытое распределительное устройство, когда все или основное оборудование РУ расположено на открытом воздухе, и ЗРУ - закрытое распределительное устройство, оборудование которого расположено в здании. Существуют некоторые общие требования, определяющие компоновку ОРУ или ЗРУ (установку каждого изделия и конструкцию сооружения) и регламентируемые ПУЭ. Электрооборудование, токоведущие части, изоляторы, крепления, ограждения, несущие конструкции, изоляционные и другие расстояния должны выбираться и устанавливаться таким образом, чтобы: называемые нормальными условиями работы электроустановки усилия, нагрев, электрическая дуга или другие сопутствующие ее работе явления (искрение, выброс газов и т. п.) не могли привести к повреждению оборудования и возникновению КЗ или замыкания на землю, а также причинить вред обслуживающему персоналу; при нарушении нормальных условий работы электроустановки обеспечивалась необходимая локализация повреждений, обусловленных действием КЗ; при снятом напряжении с какой-либо цепи относящиеся к ней аппараты, токоведущие части и конструкции подвергались безопасному осмотру, замене и ремонтам без нарушения нормальной работы соседних цепей; обеспечивалась возможность удобного транспортирования оборудования. Во всех цепях РУ должна предусматриваться установка разъединяющих устройств с видимым разрывом, обеспечивающих возможность отсоединения всех аппаратов (выключателей, отделителей, предохранителей, трансформаторов тока, трансформаторов напряжения и т.п.), каждой цепи от сборных шин, а также от других источников напряжения. Указанное требование не распространяется на шкафы КРУ и КРУН с выкатными тележками, высокочастотные заградители и конденсаторы связи, трансформаторы напряжения, устанавливаемые на отходящих линиях, разрядники, устанавливаемые на выводах трансформаторов и на отходящих линиях, а также на силовые трансформаторы с кабельными выводами. Для территории ОРУ и подстанций, на которых в нормальных условиях эксплуатации из аппаратной маслохозяйства, со складов масла,
из машинных помещений, а также из трансформаторов и выключателей при ремонтных и других работах могут иметь место утечки масла, должны предусматриваться устройства для его сбора и удаления с целью исключения возможности попадания масла в водоемы. Подстанции 35-110 кВ должны преимущественно проектироваться комплектными, заводского изготовления, блочной конструкции. Распределительные устройства 35—750 кВ рекомендуется выполнять открытого типа. Распределительные устройства 6—10 кВ могут выполняться в виде комплектных шкафов наружной установки (КРУН). Распределительные устройства 6-10 кВ закрытого типа должны применяться: в районах, где по климатическим условиям не могут быть применены КРУН; в районах с загрязненной атмосферой и районах со снежными и пыльными бурями; при числе шкафов более 25; при наличии технико-экономического обоснования (по требованиям заказчика). На подстанциях 35—330 кВ с упрощенными схемами на стороне высшего напряжения с минимальным количеством аппаратуры, размещаемых в районах с загрязненной атмосферой, рекомендуется открытая установка оборудования высокого напряжения и трансформаторов с усиленной внешней изоляцией. Закрытые распределительные устройства 35-220 кВ применяются в районах: с загрязненной атмосферой, где применение открытых распределительных устройств с усиленной изоляцией или аппаратурой следующего класса напряжения (с учетом ее обмыва) неэффективно, а удаление подстанции от источника загрязнения экономически нецелесообразно, как и требование об установке специального оборудования; со стесненной городской и промышленной застройкой; с сильными снегозаносами и снегопадом, а также в суровых климатических условиях при соответствующем технико-экономическом обосновании. Здание ЗРУ должно выполняться без окон, и его допускается выполнять как отдельно стоящим, так и сблокированным со зданиями общеподстанционных пунктов управления, в том числе и по вертикали. Герметизированные комплектные распределительные устройства с элегазовой изоляцией 110 кВ и выше (КРУЭ) применяются при стесненных условиях в крупных городах и на промышленных предприятиях, а также в районах с загрязненной атмосферой. В условиях интенсивного загрязнения в блочных схемах трансформатор — линия рекомендуется применять трансформаторы со специальными кабельными вводами на стороне 110—220 кВ и шинными выводами в закрытых коробах на стороне 6—10 кВ. Закрытая установка трансформаторов 35—220 кВ применяется: когда усиление изоляции не дает должного эффекта; когда в атмосфере содержатся вещества, вызывающие коррозию, а применение средств защиты нерационально; при необходимости снижения уровня шума у границ жилой застройки.
В закрытых распределительных устройствах 6-10 кВ должны устанавливаться шкафы КРУ заводского изготовления. Шкафы КРУ, конструкция которых предусматривает обслуживание их с одной стороны, устанавливаются вплотную к стене, без прохода с задней стороны. Ширина коридора обслуживания должна обеспечивать передвижение тележек КРУ; для их хранения и ремонта в закрытых распределительных устройствах должно предусматриваться специальное место. Компоновка и конструкция ОРУ разрабатываются для ранее принятых номинального напряжения, схемы электрических соединений, количества присоединяемых линий, трансформаторов и автотрансформаторов, выбранных параметров и типов высоковольтной коммутационной и измерительной аппаратуры (выключатели, разъединители, трансформаторы тока и напряжения) и ошиновки. При этом должны быть учтены местные условия размещения площадки, отведенной для проектируемого ОРУ: рельеф, грунты, размеры площадки, направления линий (коридоры для ввода и вывода линий), примыкание железнодорожных путей и автомобильных дорог. Должны быть также учтены местные климатические условия. Собственно ОРУ может быть выполнено широким, но коротким или узким, но длинным; ОРУ может быть выполнено с гибкой, жесткой и смешанной (и гибкой, и жесткой) ошиновкой, что отразится на конструкциях для установки (подвески) этой ошиновки и на размерах этих конструкций — пролетах порталов, высоте колонн, их количестве и массе, количестве опорных и подвесных изоляторов. Каждое из решений имеет свои достоинства и недостатки; задача проектировщика состоит в том, чтобы выбрать для данных местных условий наиболее целесообразное решение, обеспечивающее надежность, удобные условия для эксплуатации и экономичность по сравнению с другими вариантами. Большая часть подстанций промышленных предприятий выполняется с открытой частью 110 кВ и ЗРУ 10 кВ. На рис. 4.12 показана типовая открытая понижающая подстанция на напряжение 110/6—10 кВ, рассчитанная на установку трансформаторов мощностью 25-63 MB • А в районах с нормальной окружающей средой. Между питающими линиями 110 кВ предусмотрены перемычки с двумя разъединителями (см. рис. 4.3). Компоновка подстанций определяется схемой со стороны высокого и низкого (среднего) напряжений. Они могут быть как известными и даже типовыми (см. рис. 4.2-4.4), так и оригинальными, ориентированными на технологические особенности потребителя (см. рис. 4.6—4.11). Открытая часть определяется схемой расположения (оборудования). Схемы типизированы, и из них компонуется ОРУ подстанции. На рис. 4.13 изображено ОРУ 220 кВ из унифицированных конструкций. Схема расположения выполнена для блока линия - трансформатор. Разрез соответствует схеме расположения и аналогичен плану на
рис. 4.12. Установка трансформаторов тока и напряжения обосновывается отдельно. В последние годы все больше получают распространение комплектные распределительные устройства с элегазовой изоляцией (КРУЭ) на напряжении 110-500 кВ. Применение КРУЭ открывает новые перспективы индустриализации строительства подстанций, позволяет уменьшить время монтажа по сравнению с традиционными РУ в 4-5 раз, улучшить условия эксплуатации и надежность работы, сократить необходимую для подстанции площадь в 7—40 раз (в зависимости от напряжения).
Однако высокая стоимость ячеек КРУЭ на современном этапе делает их применение оправданным только в тех случаях, когда решающим является размер площадки (например, для подстанций глубоких вводов на территории промышленных предприятий или в крупных жилых массивах). Поэтому в ближайшей перспективе целесообразно ориентироваться на индустриализацию строительства подстанций с РУ традиционного исполнения. Закрытые подстанции 6-10 кВ, выполненные для 4УР как РУ 10 кВ или для 5УР как ЗРУ 10 кВ ГПП, по компоновке различаются мало, за исключением случаев, когда на ГПП сооружается развитое ОРУ (см., например, рис. 4.3, в) или к РП подключаются электроприемники (потребители), требующие специального пуска, ограничения по пуску и др. Развитое ОРУ требует помещений для щитов управления, сигнализации и автоматизации, устройств оперативного тока, аккумуляторов; воздушные выключатели требуют установки компрессоров и т. д. Распределительные устройства выполняются с однорядным (рис. 4.14) или двухрядным расположением ячеек. В целях наибольшего
приближения к электроприемникам рекомендуется применять внутренние, встроенные в здания или простроенные к ним подстанции и трансформаторные подстанции ЗУР, питающие отдельные цеха или их отделения и участки. Такое размещение дает экономию в электрической части и имеет преимущества в компактности генплана, так как позволяет сократить расстояния между цехами и уменьшить размеры проездов и подъездов и, следовательно, получить экономию территории и затрат на подземные и надземные технологические, электрические и транспортные внутризаводские коммуникации. При недопустимости или затруднительности размещения подстанций внутри цеха, а также в цехах небольшой ширины (одно-, двух-, а иногда и трехпролетные) или же при питании части нагрузок, расположенных за пределами цеха, применяются подстанции, встроенные в цех либо пристроенные к нему. Встроенные и пристроенные подстанции обычно располагаются вдоль одной из длинных сторон цеха, желательно ближайшей к источнику питания, или же при небольшой ширине цеха - в шахматном порядке вдоль двух его сторон. Рекомендуются встроенные подстанции, более удобные с точки зрения построения генплана и архитектурного оформления цеха, чем пристроенные. Распределительные пункты, в том числе крупные, тоже рекомендуется пристраивать к производственным зданиям или встраивать в них и совмещать с ближайшими трансформаторными подстанциями во всех случаях, когда это не вызывает значительного смещения последних от центра их нагрузок. Если распределительные подстанции служат для приема электроэнергии от энергоснабжающей организации, т. е. играют роль центральной распределительной подстанции ЦРП, следует предусматривать выделение камер вводов и транзитных линий, с тем чтобы они были недоступными для обслуживающего электротехнического персонала предприятия. На рис. 4.14 приведен пример встроенной двухтрансфор-
матерной подстанции, совмещенной с распределительным пунктом и конденсаторной батареей, с применением комплектных устройств (КТП, КРУ, ККУ). Внутренние цеховые подстанции, в которых доступ ко всему электрооборудованию осуществляется из цеха, целесообразны главным образом в многопролетных цехах большой ширины, когда это не мешает размещению технологического оборудования. При применении упрощенных схем коммутации цеховых подстанций ЗУР их оборудование состоит из трансформатора с вводом высокого напряжения и щита вторичного напряжения. Отдельно стоящие цеховые подстанции применяются редко, например при питании от одной подстанции нескольких цехов, при невозможности размещения подстанций внутри цехов или у наружных их стен по соображениям производственного или архитектурного характера, при наличии в цехах пожаро- или взрывоопасных производств. Вопросы для самопроверки
1. Перечислите исходные данные, необходимые для выбора главных 2. Каковы особенности выбора схем и оборудования ГПП? 3. Поясните особенности выбора силовых трансформаторов в системах электроснабжения. 4. Укажите количественные значения рабочих и аварийных нагрузок 5. Изобразите схемы блочных подстанций ГПП. 6. Рассмотрите во времени изменение взглядов на применение выключателей на высокой стороне ГПП. 7. Упрощенно изобразите возможные схемы подстанции 5УР на стороне низкого (и среднего) напряжения 6—10 кВ. 8. Представьте различные варианты схем подстанций с резкопеременной и ударной нагрузками. 9. Какие принципы используются при разработке схем печных подстанций для разделения печной и спокойной нагрузки? 10. Опишите компоновки ОРУ заводских подстанций и по справочникам найдите габариты основного оборудования, устанавливаемого на ОРУ. 11. Изобразите планы и компоновки подстанций 4УР с отдельно
ГЛАВА ПЯТАЯ Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.014 сек.) |