АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Силы Ван-дер-Ваальса

Читайте также:
  1. Реал газы. Уравнение Ван-дер-Ваальса. Изотермы реальных газов.
  2. Реальный газ. Уравнение и изотермы Ван-дер-Ваальса. Критические температуры.

 

Когда мы выбираем ту или иную модель физического процесса, мы, как я уже говорил, выбираем ту, которая позволяет непротиворечиво объяснять наблюдаемые явления, а еще лучше – предсказывать новые открытия.

В описании атомных эффектов мы используем модель атома, согласно которой электроны вращаются вокруг ядра. Рассмотрим неполярную молекулу. Раз она неполярна, то у нее нет выраженного отрицательного и положительного полюсов, и поэтому она не может так притягиваться к соседним молекулам, как это происходит, например, с молекулами воды. И все же – электроны вращаются, а не стоят на месте! Значит распределение электронов в молекуле не может быть совершенно равномерным – грубо говоря, электроны одного атома поехали влево, а электроны другого – вверх, или еще как-то. В результате неизбежно все-таки должны образовываться перекосы в распределении электрического заряда, то есть даже неполярная молекула все-таки обязана постоянно проявлять свойства легкой полярности! Перекосы в распределении электрического заряда проявляются, естественно, по определенной системе, и в итоге даже неполярная, казалось бы, молекула, все же становится слегка полярной, и в результате этого молекулы выстраиваются в некотором порядке – одноименные полюса отталкиваются, а разноименные притягиваются, и жидкость становится более «слипшейся».

То есть даже между совершенно, казалось бы, неполярными молекулами возникает очень слабое электрическое взаимодействие, которое и называется «силами Ван-дер-Ваальса».

Мы знаем, что сильное «слипание» молекул воды приводит к тому, что вода имеет огромную теплоемкость – огромную по сравнению с некоторой идеальной жидкостью, в которой молекулы совершенно неполярны. Отсюда легко сделать вывод, что и те жидкости, которые состоят из совершенно неполярных, казалось бы, молекул, будут иметь теплоемкость, несколько большую, чем это вытекает из расчетов, в которых мы полагаем молекулы этой жидкости совершенно неполярными. Это должно происходить за счет «наведенной» или, как еще говорят, «индуцированной» полярности, связанной с вращением электронов. Дело за экспериментом, и эксперимент подтверждает предсказание! Тщательное исследование этого вопроса позволяет вычислять закономерности, связывающие величину сил притяжения Ван-дер-Ваальса со структурой молекулы.

Силы Ван-дер-Ваальса очень слабы, и все-таки в микромире даже очень слабые силы могут давать чрезвычайно важные последствия. Силы Ван-дер-Ваальса – еще одна разновидность химических связей.

(Некоторый вклад в существование сил Ван-дер-Ваальса вносит еще и тот эффект, что движущиеся электроны порождают магнитное поле, но эти детали сейчас несущественны).

Действие сил Ван-дер-Ваальса, а также их совокупную мощь можно видеть на таком неожиданном примере, как лапы геккона. Исследования лап гекконов показали, что к стеклам, как и к другим ровным поверхностям, их притягивают именно силы Ван-дер-Ваальса, возникающие между тонкими щетинками лапы и поверхностью. Один квадратный миллиметр лапы геккона содержит около 14000 щетинок, похожих на волоски. Диаметр одного такого волоска – 5 микрон, то есть пять тысячных доли миллиметра (для сравнения толщина человеческого волоса примерно равняется 50 микронам). Но это еще не все - каждая щетинка покрыта 100 – 1000 ворсинками! Длина одной такой ворсинки 0,2 микрона – лишь немного короче длины волн видимого света (0.4-0.8 микрона)!! Конечно, будучи настолько мелкими, эти ворсинки плотно соприкасаются составляющими их молекулами с молекулами поверхности, в результате чего силы Ван-дер-Ваальса и начинают действовать.

Пальцы лап гекконов могут показаться очень гибкими, но на самом деле они просто сгибаются в обратную сторону – не как у людей. Это позволяет им преодолеть силы Ван-дер-Ваальса, отдирая лапы от стекла постепенно, начиная с кончиков. Такое отдирание изменяет угол между миллионами отдельных волосков и поверхностью, ослабляя действие схватывающих сил. Большую часть времени лапы гекконов присасываются не на пределе своих возможностей. Их прилипчивость зависит от шероховатости поверхности, а следовательно и от количества волосков, прикасающихся к ней. Если бы обычный мелкий геккон прислонил каждый волосок своих лап к потолку, он смог бы держать 133 килограмма!

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)