АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнения расхода для несжимаемой жидкости

Читайте также:
  1. I I. Тригонометрические уравнения.
  2. IV. Изменения в расходах на чистый объем экспорта данной страны.
  3. V – скорость жидкости.
  4. V2: ДЕ 54 - Дифференциальные уравнения, допускающие понижение порядка
  5. V2: ДЕ 57 - Фундаментальная система решений линейного однородного дифференциального уравнения
  6. V2: Механика жидкости и газа
  7. V2: Применения уравнения Шредингера
  8. V2: Уравнения Максвелла
  9. VI Дифференциальные уравнения
  10. Алгебраические уравнения
  11. Алгебраические уравнения
  12. Алгоритм составления уравнения химической реакции

 

Таким образом, искусственное сужающее устройство используется как первичный преобразователь физической величины – расхода. Выходной физической величиной данного первичного преобразователя является перепад давления. Выведем выражение, связывающее выходную физическую величину (перепад давления на сужающем устройстве) и преобразуемую физическую величину (расход) для случая несжимаемой жидкости. Данное выражение в литературе и нормативных документах называется уравнением расхода для сужающего устройства.

Для вывода уравнения расхода воспользуемся законами сохранения энергии и материи для потока несжимаемой жидкости.

Рассмотрим поток жидкости и предположим, что в сечениях А-А и В-В (рис.1.1) скорости по всему сечению равны средней скорости и направлены параллельно оси горизонтально расположенной трубы. Согласно закону сохранения энергии

 

(1.1)

 

для случая несжимаемой жидкости (), получим

 

, (1.2)

 

где и – абсолютные давления в сечениях А-А и В-В соответственно, Па; – плотность протекающей жидкости перед сужающим устройством, кг/м3; и – средние скорости потока жидкости в сечениях А-А и В-В соответственно, м/с.

Согласно условию неразрывности струи для несжимаемой жидкости (закон сохранения материи):

 

. (1.3)

 

Выразим и через – площадь отверстия сужающего устройства при рабочей температуре, м2 :

 

, (1.4)

, (1.5)

 

где – относительная площадь сужающего устройства (, здесь и – соответственно диаметр отверстия сужающего устройства и трубопровода при рабочей температуре); – коэффициент сужения струи.

Подставив (1.4) и (1.5) в (1.3), получим

 

. (1.6)

 

Подставим выражение (1.6) в (1.2), после чего выразим скорость в самом узком сечении струи () через разность давлений в самом широком и самом узком сечениях потока ():

 

. (1.7)

Давления и отнесены к сечению А-А и В-В, т.е. к самому широкому и самому узкому сечениям потока. В большинстве же случаев давления измеряют непосредственно в углах до и после сужающего устройства. Кроме того, в реальном потоке вследствие вязкости и трения жидкости о стенки имеет место потеря энергии и скорости в различных точках сечения. Поэтому при переходе к действительным условиям, а также вследствие замены давлений и давлениями и (рис. 1.1) в формулу (1.7) вводят поправочный коэффициент и уравнение средней скорости в наиболее узком сечении потока принимает вид

 

 

. (1.8)

 

Секундный расход в единицах объема для несжимаемой жидкости может быть выражен как или

 

. (1.9)

 

Коэффициенты и не могут быть определены с достаточной точностью независимо друг от друга. Поэтому их объединяют в один общий коэффициент

 

, (1.10)

 

который называют коэффициентом расхода и определяют экспериментальным путем.

Уравнения расхода для несжимаемой жидкости приобретают вид:

 

; (1.11)

, (1.12)

 

где – расход в единицах массы, кг/с.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)