АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод подстановки. 1) Из одного уравнения выражаем одно из неизвестных, например x, через коэффициенты и другое неизвестноеy:

Читайте также:
  1. F. Метод, основанный на использовании свойства монотонности показательной функции .
  2. FAST (Методика быстрого анализа решения)
  3. I этап Подготовка к развитию грудобрюшного типа дыхания по традиционной методике
  4. I. 2.1. Графический метод решения задачи ЛП
  5. I. 3.2. Двойственный симплекс-метод.
  6. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  7. I. Метод рассмотрения остатков от деления.
  8. I. Методические основы
  9. I. Методические основы оценки эффективности инвестиционных проектов
  10. I. Организационно-методический раздел
  11. I. Предмет и метод теоретической экономики
  12. I. Что изучает экономика. Предмет и метод экономики.

1) Из одного уравнения выражаем одно из неизвестных, например x, через коэффициенты и другое неизвестное y:

x = (c – by) / a. (2)

2) Подставляем во второе уравнение вместо x:

d (c – by) / a + ey = f.

3) Решая последнее уравнение, находим y:

y = (af – cd) / (ae – bd).

4) Подставляем это значение вместо y в выражение (2):

x = (ce – bf) / (ae – bd).

П р и м е р. Решить систему уравнений:

Из первого уравнения выразим х через коэффициенты и y:

 

x = (2 y + 4) / 3.

Подставляем это выражение во второе уравнение и находим y:

(2 y + 4) / 3 + 3 y = 5,откуда y = 1.

 

Теперь находим х, подставляя найденное значение вместо y в

выражение для х: x = (2 · 1 + 4) / 3, откуда x = 2.

 

Сложение или вычитание. Этот метод состоит в следующем.

1) Умножаем обе части 1-го уравнения системы (1) на (– d), а обе части 2-го уравнения на а и складываем их:

Отсюда получаем: y = (af – cd) / (ae – bd).

2) Подставляем найденное для y значение в любое уравнение системы (1):

ax + b(af – cd) / (ae – bd) = c.

3) Находим другое неизвестное: x = (ce – bf) / (ae – bd).

 

 

П р и м е р. Решить систему уравнений:

методом сложения или вычитания.

Умножаем первое уравнение на –1, второе – на 3 и складываем их:

отсюда y = 1. Подставляем это значение во второе уравнение

(а в первое можно?): 3 x + 9 = 15, отсюда x = 2.

 

Определители второго порядка. Мы видели, что формулы для решения системы двух линейных уравнений с двумя неизвестными имеют вид:

 

x = (ce – bf) / (ae – bd),

(3)

y = (af – cd) / (ae – bd).

Эти формулы легко запоминаются, если ввести для их числителей и знаменателей следующий символ:

, который будет обозначать выражение: psqr.

Это выражение получается перекрёстным умножением чисел p, q, r, s:

и последующим вычитанием одного произведения из другого: ps – qr. Знак «+» берётся для произведения чисел, лежащих на диагонали, идущей из левого верхнего числа к правому нижнему; знак «–» - для другой диагонали, идущей из правого верхнего числа к левому нижнему. Например,


Выражение называется определителем второго порядка.

Правило Крамера. Используя определители, можно переписать формулы (3):

Формулы (4) называются правилом Крамера для системы двух линейных уравнений с двумя неизвестными.

П р и м е р. Решить систему уравнений

используя правило Крамера.

Р е ш е н и е. Здесь a = 1, b = 1, c = 12, d = 2, e = 3, f = 14.

Исследование решений системы двух линейных уравнений с двумя неизвестными, показывает, что в зависимости от коэффициентов уравнений возможны три различных случая:

 

1) коэффициенты при неизвестных не пропорциональны: a: db: e,

в этом случае система линейных уравнений имеет единственное решение, получаемое по формулам (4);

2) все коэффициенты уравнений пропорциональны: a: d = b: e = c: f,

в этом случае система линейных уравнений имеет бесконечное множество решений, так как здесь мы имеем фактически одно уравнение вместо двух.

П р и м е р. В системе уравнений

и эта система уравнений имеет бесконечное множество решений.

Разделив первое уравнение на 2, а второе – на 3, мы получим два

одинаковых уравнения:

т.е. фактически одно уравнение с двумя неизвестными, у которого

бесконечное множество решений.

 

3) коэффициенты при неизвестных пропорциональны, но не пропорциональны свободным членам: a: d = b: ec: f,

в этом случае система линейных уравнений не имеет решений, так как мы имеем противоречивые уравнения.

П р и м е р. В системе уравнений

но отношение свободных членов 7 / 12 не равно 1 / 3.

Почему эта система не имеет решений? Ответ очень простой.

Разделив второе уравнение на 3, мы получим:

Уравнения этой системы противоречивы, потому что одно и то

же выражение 2 x – 3 y не может быть одновременноравно и 7, и 4.

Решение уравнения первой степени с двумя неизвестными в целых числах

Гельфонд А. О.
Решение уравнений в целых числах.

(популярные лекции по математике)

М.: Наука, 1978, cc. 8 — 18.

7.4.4.7.1. Случай, когда коэффициент c отличен от нуля

Определение и простейшие свойства взаимно простых чисел см. здесь.

 

(популярные лекции по математике)

М.: Наука, 1978, cc. 9 — 18.

7.4.4.7.1.1. Алгоритм нахождения конкретного решения, когда коэффициент c отличен от нуля

Нахождение формул решений для случая c = 0 см. здесь.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)