|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Линейные неоднородные дифференциальные уравнения
Для интегрирования линейных неоднородных уравнений (Q(x)¹ 0) применяются в основном два метода: метод Бернулли и метод Лагранжа.
Метод Бернулли. (Якоб Бернулли (1654-1705) – швейцарский математик.)
Суть метода заключается в том, что искомая функция представляется в виде произведения двух функций . При этом очевидно, что - дифференцирование по частям. Подставляя в исходное уравнение, получаем: Далее следует важное замечание – т.к. первоначальная функция была представлена нами в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть произвольным, выбранным по нашему усмотрению. Например, функция может быть представлена как и т.п. Таким образом, можно одну из составляющих произведение функций выбрать так, что выражение . Таким образом, возможно получить функцию u, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме:
Для нахождения второй неизвестной функции v подставим поученное выражение для функции u в исходное уравнение с учетом того, что выражение, стоящее в скобках, равно нулю. Интегрируя, можем найти функцию v: ; ; Т.е. была получена вторая составляющая произведения , которое и определяет искомую функцию. Подставляя полученные значения, получаем:
Окончательно получаем формулу: , С2 - произвольный коэффициент. Это соотношение может считаться решением неоднородного линейного дифференциального уравнения в общем виде по способу Бернулли.
Метод Лагранжа. (Ларганж Жозеф Луи (1736-1813) - французский математик).
Метод Лагранжа решения неоднородных линейных дифференциальных уравнений еще называют методом вариации произвольной постоянной.
Вернемся к поставленной задаче:
Первый шаг данного метода состоит в отбрасывании правой части уравнения и замене ее нулем. Далее находится решение получившегося однородного дифференциального уравнения: .
Для того, чтобы найти соответствующее решение неоднородного дифференциального уравнения, будем считать постоянную С1 некоторой функцией от х. Тогда по правилам дифференцирования произведения функций получаем: Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |