|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Линейные неоднородные дифференциальные уравнения
Для интегрирования линейных неоднородных уравнений (Q(x)¹ 0) применяются в основном два метода: метод Бернулли и метод Лагранжа.
Метод Бернулли. (Якоб Бернулли (1654-1705) – швейцарский математик.)
Суть метода заключается в том, что искомая функция представляется в виде произведения двух функций При этом очевидно, что Подставляя в исходное уравнение, получаем: Далее следует важное замечание – т.к. первоначальная функция была представлена нами в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть произвольным, выбранным по нашему усмотрению. Например, функция Таким образом, можно одну из составляющих произведение функций выбрать так, что выражение Таким образом, возможно получить функцию u, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме:
Для нахождения второй неизвестной функции v подставим поученное выражение для функции u в исходное уравнение Интегрируя, можем найти функцию v:
Т.е. была получена вторая составляющая произведения Подставляя полученные значения, получаем:
Окончательно получаем формулу: Это соотношение может считаться решением неоднородного линейного дифференциального уравнения в общем виде по способу Бернулли.
Метод Лагранжа. (Ларганж Жозеф Луи (1736-1813) - французский математик).
Метод Лагранжа решения неоднородных линейных дифференциальных уравнений еще называют методом вариации произвольной постоянной.
Вернемся к поставленной задаче:
Первый шаг данного метода состоит в отбрасывании правой части уравнения и замене ее нулем. Далее находится решение получившегося однородного дифференциального уравнения:
Для того, чтобы найти соответствующее решение неоднородного дифференциального уравнения, будем считать постоянную С1 некоторой функцией от х. Тогда по правилам дифференцирования произведения функций получаем: Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |