|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Б2 3.Билинейные и квадратичные формы. Приведение их к каноническому виду. акон инерцииБилинейной ф-ей или бил-ой формой на лин пространстве наз ф-ия от 2-х векторов из , линейная по каждому из своих аргументов, т.е.удовлетворяющая рав-ам: , , Квадратичной формой или квадратичной ф-ей на лин пр-ве наз функция , значение которой на любом векторе определяется рав-ом , где - симметричная билинейная форма. Паре векторов на пл-ти сопоставим скаляр пр-ние. В силу известных св-в скаляр-го произв это – билинейная форма. Пусть - базис в . Если и - координаты векторов и , то значение БФ на этой паре векторов может быть вычислено так или . Здесь чисел называется ее коэффициентами в базисе. Их запис в в квадр матрицы порядка , . Эта матрица наз матрицей билинейной формы в данном базисе. Матрицей квадратич формы наз матрица соответ БФ. Квадр форма , , , не имеющую попарных произведений переменных наз квадратич формой канонич вида. Переменные , в которых квадр форма имеет канонич вид, наз канонич переменными. Один из методов преобразования квадр формы к канонич виду путем замены переменных состоит в последоват-м выделении полных квадратов. Такой м-д наз м-дом Лагранжа. Квадр форму можно привести к канонич виду ортогонал преобразованием. При этом коэф-ты квадр формы канонич вида будут соотв знач матрицы исход квадр формы. Закон инерции. Теорема. Число отрицат и число положит коэф-ов в канонич виде квадр формы не завис от базиса, в котор она приведена к канонич виду. Доказательство: Докажем, что если в каком-либо базисе форма приведена к канонич виду, то число коэф-ов =-1 равно отрацат индексу формы . Пусть в базисе форма ранга с индексом имеет канонич вид: . Обозн через линейную оболочку векторов , а через лин оболочку остальных базисных векторов. Для любого имеем: , и , если только . Значит, отрицательно определена на и . На форма положит-но полуопределенная, потому что для любого и . (форма может быть =0 на ненулевом векторе, если ). . Пусть сущ-т подпр-во размерности , на которм отриц определена. Тогда, т.к.сумма размерностей и больше , эти подпр-ва имеют ненулевой вектор в пересечении. Имеем т.к. и , т.к. . Получ противоречие, показывает, что . Число коэф-ов, равных -1, равно отрицат индексу и поэтому не зависит от базиса. Число коэф-ов, = +1, также не зависит от базиса, т.к.оно равно а ранг и индекс от базиса не зависят. Ч.т.д. Следствие: число положит и число отрицат коэф-ов в любом диагонал виде квадр формы не зависят от базиса.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |