|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Решение однородных систем методом ГауссаОднородная система всегда совместна, так как она всегда имеет нулевое решение x 1 = x 2 = … = xn = 0. Для нее справедливо, что . Теорема Кронекера - Капелли для однородной системы: 1) если , то система имеет единственное решение – нулевое, 2) если , то система имеет бесконечное множество решений, среди которых есть и ненулевые. Определение 3. Линейно независимая совокупность решений однородной системы называется фундаментальной системой решений, если каждое решение является линейной комбинацией остальных. Идея метода Гаусса: матрица системы приводится к трапециевидной или к треугольной форме, затем все получившиеся базисные переменные выражаются через свободные переменные и находится фундаментальное решение системы. Пример. Решить систему линейных уравнений: .
Решение. Запишемматрицу системы: , отсюда т.к. три ненулевые строки. Количество неизвестных n = 4, т.е. , следовательно, по теореме Кронекера - Капелли система имеет бесконечное множество решений. Найдем его. Запишем полученную матрицу в виде системы уравнений:
. Система имеет три базисные неизвестные: х 1, х 2, х 3 и одну свободную х 4. Выразим базисные неизвестные через свободную переменную, начиная с последнего уравнения: , , . Ответ: Фундаментальная система решений: .
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |