|
||||||||||||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Линии регрессии. Метод наименьших квадратов (МНК)Линии регрессии - это линии, отражающие основную форму зависимости отклика Y от факторного признака X. Определение вида этих линий – основная задача регрессионного анализа.
МНК позволяет определить параметры линии регрессии Ломаная линия, соединяющая фактические данные на корреляционном поле, называется эмпирической регрессией. Основное требование МНК: Сумма квадратов отклонений эмпирических значений отклика от теоретических должна быть минимальной.
Отклонение
Рассмотрим простейший случай – линейную регрессию.
Определим с помощью МНК неизвестные параметры a и b:
Решаем эту систему нормальных уравнений методом Крамера:
Регрессия y на x задается следующей формулой:
Это две различные прямые, пересекающиеся в точке
Одна из этих прямых y=ax+b получается в результате решения задачи минимизации суммы квадратов отклонений по вертикали, а другая (x=cy+d) - по горизонтали.
Для удобства определения параметров a и b можно использовать следующую таблицу:
Уравнение регрессии нужно в первую очередь для проведения прогноза (экстраполяции и интерполяции). При экстраполяции не рекомендуется выходить как в сторону больших, так и в сторону меньших значений по X за пределы, превышающие 1/3 размаха вариации по X.
Границы доверительного интервала определяются следующим образом:
m - число параметров в уравнении регрессии. n-m - число степеней свободы, a - уровень значимости,
Поиск по сайту: |
|||||||||||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.092 сек.) |