|
|||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Критерии оптимальности
В САПР процедуры параметрического синтеза выполняются либо человеком в процессе многовариантного анализа (в интерактивном режиме), либо реализуются на базе формальных методов оптимизации (в автоматическом режиме). В последнем случае находят применение несколько постановок задач оптимизации. Наиболее распространенной является детерминированная постановка: заданы условия работоспособности на выходные параметры Y и нужно найти номинальные значения проектных параметров X, к которым относятся параметры всех или части элементов проектируемого объекта. Назовем эту задачу оптимизации базовой. В частном случае, когда требования к выходным параметрам заданы нечетко, к числу рассчитываемых величин могут быть отнесены также нормы выходных параметров, фигурирующие в их условиях работоспособности. Если проектируются изделия для дальнейшего серийного производства, то важное значение приобретает такой показатель, как процент выпуска годных изделий в процессе производства. Очевидно, что успешное выполнение условий работоспособности в номинальном режиме не гарантирует их выполнения при учете производственных погрешностей, задаваемых допусками параметров элементов. Поэтому целью оптимизации становится максимизация процента выхода годных, а к результатам решения задачи оптимизации относятся не только номинальные значения проектных параметров, но и их допуски. Базовая задача оптимизации ставится как задача математического программирования
где F(X) – целевая функция, X – вектор управляемых (проектных) параметров, φ(Х) и ψ(Х) – функции-ограничения, Dx,.–допустимая область в пространстве управляемых параметров. Запись (7.35) интерпретируется как задача поиска экстремума целевой функции путем варьирования управляемых параметров в пределах допустимой области. Таким образом, для выполнения расчета номинальных значений параметров необходимо, во-первых, сформулировать задачу в виде (7.35), во-вторых, решить задачу поиска экстремума F(X). Сложность постановки оптимизационных проектных задач обусловлена наличием у проектируемых объектов нескольких выходных параметров, которые могут быть критериями оптимальности, но в задаче (7.35) целевая функция должна быть одна. Другими словами, проектные задачи являются многокритериальными, и возникает проблема сведения многокритериальной задачи к однокритериальной. Применяют несколько способов выбора критерия оптимальности. В частном критерии среди выходных параметров один выбирают в качестве целевой функции, а условия работоспособности остальных выходных параметров относят к ограничениям задачи (7.35). Эта постановка вполне приемлема, если действительно можно выделить один наиболее критичный выходной параметр. Но в большинстве случаев сказывается недостаток частного критерия (рис. 7.18). Рисунок 7.18 – Области Парето и работоспособности На этом рисунке представлено двумерное пространство выходных параметров у1 и у2, для которых заданы условия работоспособности у1 < Т1 и у2 < Т2. Кривая АВ является границей достижимых значений выходных параметров. Это ограничение объективное и связано с существующими физическими и технологическими условиями производства, называемыми условиями реализуемости. Область, в пределах которой выполняются все условия реализуемости и работоспособности, называют областью работоспособности. Множество точек пространства выходных параметров, из которых невозможно перемещение, приводящее к улучшению всех выходных параметров, называют областью компромиссов, или областью Парето. Участок кривой АВ (см. рис. 7.18) относится к области Парето. Если в качестве целевой функции в ситуации рис. 7.18. выбрать параметр у1 то результатом оптимизации будут параметры X, соответствующие точке В. Но это граница области работоспособности и, следовательно, при нестабильности внутренних и внешних параметров велика вероятность выхода за пределы области работоспособности. Конечно, результаты можно улучшить, если применять так называемый метод уступок, при котором в качестве ограничения принимают условие работоспособности со скорректированной нормой в виде у2<Т2+ Δ, где А – уступка. Но возникает проблема выбора значений уступок, т.е. результаты оптимизации будут иметь субъективный характер. Очевидно, что ситуация не изменится, если целевой функцией будет выбран параметр у2, – оптимизация приведет в точку А. Аддитивный критерий объединяет (свертывает) все выходные параметры (частные критерии) в одну целевую функцию, представляющую собой взвешенную сумму частных критериев
где ωj, – весовой коэффициент, т – число выходных параметров. Функция (7.36) подлежит минимизации, при этом если условие работоспособности имеет вид уj<Тj, то ωj<0. Недостатки аддитивного критерия – субъективный подход к выбору весовых коэффициентов и неучет требований ТЗ. Действительно в (7.36) не входят нормы выходных параметров. Аналогичные недостатки присущи и мультипликативному критерию, целевая функция которого имеет вид
Нетрудно видеть, что если прологарифмировать (7.37), то мультипликативный критерий превращается в аддитивный. Более предпочтительным является максиминный критерий, в качестве целевой функции которого принимают выходной параметр, наиболее неблагополучный с позиций выполнения условий работоспособности. Для оценки степени выполнения условия работоспособности j-го выходного параметра вводят запас работоспособности этого параметра Sj, и этот запас можно рассматривать как нормированный j-й выходной параметр. Например (здесь и далее для лаконичности изложения предполагается, что все выходные параметры приведены к виду, при котором условия работоспособности становятся неравенствами в форме уj<Тj): Sj = (Тj < уj)/ Тj или Sj = (Тj < уномj)/ δj где уномj –номинальное значение, а δj –некоторая характеристика рассеяния j-го выходного параметра, например, трехсигмовый допуск. Тогда целевая функция в максиминном критерии есть
Здесь запись [1:m]означает множество целых чисел в диапазоне от 1 до m. Задача (7.35) при максиминном критерии конкретизируется следующим образом:
где допустимая область Dx определяется только прямыми ограничениями на управляемые параметры xi: ximin< xi< ximax.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |