АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Линейные дифференциальные уравнения 1-го порядка

Читайте также:
  1. A) линейные
  2. I I. Тригонометрические уравнения.
  3. I. Уравнения, сводящиеся к алгебраическим.
  4. II. Однородные уравнения.
  5. V2: ДЕ 11 - Векторные пространства. Линейные операции над векторами
  6. V2: ДЕ 4 – Линейные отображения. Линейные операции над матрицами
  7. V2: ДЕ 5 - Линейные отображения. Умножение матриц
  8. V2: ДЕ 54 - Дифференциальные уравнения, допускающие понижение порядка
  9. V2: ДЕ 57 - Фундаментальная система решений линейного однородного дифференциального уравнения
  10. V2: ДЕ 6 - Линейные отображения. Определители второго порядка
  11. V2: Применения уравнения Шредингера
  12. V2: Уравнения Максвелла

Линейным уравнением 1-го порядка называется уравнение, линейное относительно искомой функции и ее производной. Оно имеет вид:

, (7.1)

где P(x) и Q(x) – заданные непрерывные функции от x. Если функция , то уравнение (7.1) имеет вид: (7.2)

и называется линейным однородным уравнением, в противном случае оно называется линейным неоднородным уравнением.

Линейное однородное дифференциальное уравнение (7.2) является уравнением с разделяющимися переменными:

(7.3)

Выражение (7.3) есть общее решение уравнения (7.2). Чтобы найти общее решение уравнения (7.1), в котором функция P(x) обозначает ту же функцию, что и в уравнении (7.2), применим прием, называемый методом вариации произвольной постоянной и состоящий в следующем: постараемся подобрать функцию С=С(x) так, чтобы общее решение линейного однородного уравнения (7.2) являлось бы решением неоднородного линейного уравнения (7.1). Тогда для производной функции (7.3) получим:

.

Подставляя найденную производную в уравнение (7.1), будем иметь:

или .

Откуда , где - произвольная постоянная. В результате общее решение неоднородного линейного уравнения (7.1) будет (7.4)

Первое слагаемое в этой формуле представляет общее решение (7.3) линейного однородного дифференциального уравнения (7.2), а второе слагаемое формулы (7.4) есть частное решение линейного неоднородного уравнения (7.1), полученное из общего (7.4) при . Этот важный вывод выделим в виде теоремы.

Теорема. Если известно одно частное решение линейного неоднородного дифференциального уравнения , то все остальные решения имеют вид , где - общее решение соответствующего линейного однородного дифференциального уравнения.

Однако надо отметить, что для решения линейного неоднородного дифференциального уравнения 1-го порядка (7.1) чаще применяется другой метод, иногда называемый методом Бернулли. Будем искать решение уравнения (7.1) в виде . Тогда . Подставим найденную производную в исходное уравнение: .

Объединим, например, второе и третье слагаемые последнего выражения и вынесем функцию u(x) за скобку: (7.5)

Потребуем обращения в нуль круглой скобки: .

Решим это уравнение, полагая произвольную постоянную C равной нулю: . С найденной функцией v(x) вернемся в уравнение (7.5): .

Решая его, получим: .

Следовательно, общее решение уравнения (7.1) имеет вид:

.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)