|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Магний и его сплавы
Магний – металл светло-серого цвета, обладающий наименьшим удельным весом среди металлов – 1,74 г/см3. Имеет гексагональную кристаллическую решетку. Температура плавления – 651°С. Несмотря на образование на поверхности тонкой пленки окиси магния (МgО), металл легко окисляется во влажной атмосфере, быстро разрушается под действием морской воды и большинства минеральных кислот, при повышении температуры интенсивно окисляется и может самовоспламеняться. Механические свойства магния невысоки: он обладает небольшой прочностью и малой пластичностью: σВ = 190 МПа, σ0,2 = 90 МПа, δ = 18%. Такие свойства магния ограничивают его применение как конструкционного материала. Технический магний выпускается трех марок: МГ90 (99,9% Мg), МГ95 (99,95% Мg), МГ96 (99,96% Мg). Используется технический магний как пиротехнический материал, в химических производствах, как раскислитель и модификатор в металлургии и для получения сплавов на его основе. Основными легирующими элементами в магниевых сплавах являются марганец, алюминий и цинк. Алюминий и цинк оказывают большое влияние на прочность и пластичность магниевых сплавов: максимальные значения механических характеристик достигаются при введении в сплав Магниевые сплавы хорошо обрабатываются резанием и свариваются различными видами сварки, удовлетворительно работают при низких температурах. Для повышения механических свойств сплавы на основе магния могут подвергаются различным видам термической обработки: · диффузионному отжиг при температуре 400–490 °С в течение 10–24 часов для устранения ликвации в литых сплавах (выравнивания химического состава по объему зерен); · рекристаллизационному отжиг при температуре 250–350 °С для снятия наклепа; при этом отжиге уменьшается анизотропия механических свойств, возникшая при пластической деформации; · закалке со старением при температуре 150–200 °С; · гомогенизации (закалке) при 380–540 °С. По технологии изготовления изделий магниевые сплавы разделяются на литейные МЛ и деформируемые МА. В литых магниевых сплавах повышения механических свойств добиваются измельчением зерна модифицированием добавками мела или магнезита. При литье в песчаные формы в смесь вводят специальные добавки (фториды алюминия) для уменьшения окисления магния. Среди литейных магниевых сплавов широкое применение имеют сплавы МЛ5, МЛ6, МЛ10, МЛ12 и др. Химический состав и свойства приведены в таблице 16.2. Сплавы системы «Mg – Al – Zn» (МЛ4, МЛ5, МЛ6) – отличаются наилучшими литейными свойствами: малой линейной усадкой, хорошей жидкотекучестью, малой склонностью к образованию рыхлот. Из этих сплавов изготавливают сложные ответственные отливки. Структура этих сплавов состоит из δ-твердого раствора алюминия и цинка в магнии с включениями по границам зерен соединения Мg17Al12 (в виде мелких частиц голубоватого цвета). После литья сплавы подвергают гомогенизационному отжигу.
Таблица 16.2. Химический состав и механические свойства магнитных сплавов
Жаропрочные магниевые сплавы (МЛ9 – МЛ11, МЛ14, ВМЛ–1 и ВМЛ–2) разработаны на основе системы «Мg – Zn – Zr» и используются для длительной эксплуатации при температурах 250–350 °С и кратковременной – до 400 °С. Жаропрочные свойства определяются присутствием интерметаллидных фаз. Эти сплавы упрочняются с помощью закалки и старения. Температура закалки от 540–545 °С, охлаждение в воде при температуре 80 °С, старение при 205 °С. Жаропрочные магниевые сплавы часто применяются для деталей, подвергающихся одновременному воздействию статических и усталостных нагрузок. На рисунке 16.7 приведена зависимость пределов ползучести и выносливости сплава МЛ10 от температуры. Коррозионная стойкость магниевых жаропрочных сплавов зависит от их состава, структуры и содержания примесей. Эти сплавы обладают хорошими технологическими литейными свойствами, высокой герметичностью (до 450 атм.), способностью сохранять высокую стабильность размеров. Отличаются малой склонностью к образованию микрорыхлот, горячих трещин в отливках.
Рис.16.7. Изменение пределов ползучести и выносливости сплава МЛ10,
Дополнительное легирование сплавов на основе «Мg – Zn – Zr» редкоземельными элементами, например в сплавах: МЛ12, МЛ15, МЛ18, уменьшает склонность к трещинообразованию, чувствительность к толщине сечения литой детали и повышает прочностные характеристики. Деформируемые магниевые сплавы обозначаются МА1, МА2, МА8 и др. Среди деформируемых сплавов наибольшей прочностью обладают сплавы систем «Mg – Al», «Mg – Mn», «Mg – Zn», легированные цирконием, кадмием, серебром, редкоземельными металлами. Алюминий и цинк обладают высокой растворимостью в магнии. В промышленные сплавы вводят до 10% алюминия и до 6% цинка. Прочность увеличивается сначала за счет возрастания концентрации твердого раствора, затем за счет появления вторичных фаз Mg4Al3 и Mg3Zn3Al2. Цинк и алюминий придают сплавам хорошую технологическую пластичность, что позволяет изготовить из них кованые и штампованные детали сложной формы. Для устранения вредного влияния железа и повышения коррозионной стойкости вводят марганец. Максимальная коррозионная стойкость достигается при добавке около 1,3% Мn. Кадмий неограниченно растворяется в магнии и не образует собственных фаз. Легируя твёрдый раствор, кадмий повышает прочность и технологическую пластичность сплавов. Серебро обладает значительной (до 15,5%) растворимостью в магнии. Высокая прочность сплавов системы «Mg – Al», легированных кадмием и серебром объясняется наличием высоколегированного твёрдого раствора и большого количества упрочняющей фазы Mg4Al3. Магниевые сплавы системы «Mg – Zn» дополнительно легируют цирконием, редкоземельными металлами. Содержание цинка ограничивается 5–6%, при больших значениях в структуре сплава появляется интерметаллидная фаза MgZn2, которая ведет к упрочнению, но снижению пластичности. Цирконий оказывает рафинирующее и модифицирующее действие. Вступая в соединение с водородом, он уменьшает пористость, измельчает структуру, повышает временное сопротивление и пластичность. Деформируемые сплавы производят в виде поковок, штамповых заготовок, горячекатаных полос, прутков и профилей. Температурные интервалы технологических процессов обработки давлением магниевых сплавов находятся в пределах: прессование при 300–480 °С, прокатка при Большинство магниевых сплавов термической обработкой не упрочняется. Они применяются в отожженном состоянии или в состоянии после горячей деформации.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |