АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Магний и его сплавы

Читайте также:
  1. Алюминий и его сплавы
  2. Алюминий и его сплавы
  3. Деформируемые сплавы, упрочняемые термической обработкой.
  4. Жаропрочные стали и сплавы
  5. Жаростойкие стали и сплавы
  6. Медь и её сплавы
  7. Медь и её сплавы.
  8. Сплавы.
  9. ТВЕРДЫЕ СПЛАВЫ
  10. Титан и его сплавы
  11. Титан и его сплавы

Магний – металл светло-серого цвета, обладающий наименьшим удельным весом среди металлов – 1,74 г/см3. Имеет гексагональную кристаллическую решетку. Температура плавления – 651°С. Несмотря на образование на поверхности тонкой пленки окиси магния (МgО), металл легко окисляется во влажной атмосфере, быстро разрушается под действием морской воды и большинства минеральных кислот, при повышении температуры интенсивно окисляется и может самовоспламеняться.

Механические свойства магния невысоки: он обладает небольшой прочностью и малой пластичностью: σВ = 190 МПа, σ0,2 = 90 МПа, δ = 18%. Такие свойства магния ограничивают его применение как конструкционного материала. Технический магний выпускается трех марок: МГ90 (99,9% Мg), МГ95 (99,95% Мg), МГ96 (99,96% Мg). Используется технический магний как пиротехнический материал, в химических производствах, как раскислитель и модификатор в металлургии и для получения сплавов на его основе.

Основными легирующими элементами в магниевых сплавах являются марганец, алюминий и цинк. Алюминий и цинк оказывают большое влияние на прочность и пластичность магниевых сплавов: максимальные значения механических характеристик достигаются при введении в сплав
6–7% алюминия или 4–6% цинка. Эти элементы образуют с магнием упрочняющие фазы Мg4Аl3 и МgZn2, выделяющиеся в мелкодисперсном виде после закалки со старением. Цирконий, титан, кальций, церий, лантан измельчают зерно, раскисляют сплав, повышают его жаропрочность.

Магниевые сплавы хорошо обрабатываются резанием и свариваются различными видами сварки, удовлетворительно работают при низких температурах. Для повышения механических свойств сплавы на основе магния могут подвергаются различным видам термической обработки:

· диффузионному отжиг при температуре 400–490 °С в течение 10–24 часов для устранения ликвации в литых сплавах (выравнивания химического состава по объему зерен);

· рекристаллизационному отжиг при температуре 250–350 °С для снятия наклепа; при этом отжиге уменьшается анизотропия механических свойств, возникшая при пластической деформации;

· закалке со старением при температуре 150–200 °С;

· гомогенизации (закалке) при 380–540 °С.

По технологии изготовления изделий магниевые сплавы разделяются на литейные МЛ и деформируемые МА.



В литых магниевых сплавах повышения механических свойств добиваются измельчением зерна модифицированием добавками мела или магнезита. При литье в песчаные формы в смесь вводят специальные добавки (фториды алюминия) для уменьшения окисления магния.

Среди литейных магниевых сплавов широкое применение имеют сплавы МЛ5, МЛ6, МЛ10, МЛ12 и др. Химический состав и свойства приведены в таблице 16.2.

Сплавы системы «Mg – Al – Zn» (МЛ4, МЛ5, МЛ6) – отличаются наилучшими литейными свойствами: малой линейной усадкой, хорошей жидкотекучестью, малой склонностью к образованию рыхлот. Из этих сплавов изготавливают сложные ответственные отливки. Структура этих сплавов состоит из δ-твердого раствора алюминия и цинка в магнии с включениями по границам зерен соединения Мg17Al12 (в виде мелких частиц голубоватого цвета). После литья сплавы подвергают гомогенизационному отжигу.

 


Таблица 16.2.

Химический состав и механические свойства магнитных сплавов

 

Сплав Содержание элементов (средние значения), % Режим термической обработки σВ, МПа δ, %
  Al Zn Mn Другие элементы
Литейные сплавы
МЛ1 8,25 0,35 закалка и естественное старение
МЛ6 9,6 0,9 0,12 закалка и искусственное старение в течение 3–5 ч.
МЛ10 0,4 0,7 Zr; 2,5 Nd
МЛ12 4,5 0,85 Zr условное старение
Деформируемые сплавы
МА1 1,9 7,5
МА2–1 4,4 1,15 0,5
МА14 5,5 0,55 закалка и искусственное старение в течение 2–3 ч.

 

Жаропрочные магниевые сплавы (МЛ9 – МЛ11, МЛ14, ВМЛ–1 и ВМЛ–2) разработаны на основе системы «Мg – Zn – Zr» и используются для длительной эксплуатации при температурах 250–350 °С и кратковременной – до 400 °С. Жаропрочные свойства определяются присутствием интерметаллидных фаз. Эти сплавы упрочняются с помощью закалки и старения. Температура закалки от 540–545 °С, охлаждение в воде при температуре 80 °С, старение при 205 °С.

‡агрузка...

Жаропрочные магниевые сплавы часто применяются для деталей, подвергающихся одновременному воздействию статических и усталостных нагрузок. На рисунке 16.7 приведена зависимость пределов ползучести и выносливости сплава МЛ10 от температуры.

Коррозионная стойкость магниевых жаропрочных сплавов зависит от их состава, структуры и содержания примесей. Эти сплавы обладают хорошими технологическими литейными свойствами, высокой герметичностью (до 450 атм.), способностью сохранять высокую стабильность размеров. Отличаются малой склонностью к образованию микрорыхлот, горячих трещин в отливках.

 

Рис.16.7. Изменение пределов ползучести и выносливости сплава МЛ10,
в зависимости от температуры

 

Дополнительное легирование сплавов на основе «Мg – Zn – Zr» редкоземельными элементами, например в сплавах: МЛ12, МЛ15, МЛ18, уменьшает склонность к трещинообразованию, чувствительность к толщине сечения литой детали и повышает прочностные характеристики.

Деформируемые магниевые сплавы обозначаются МА1, МА2, МА8 и др. Среди деформируемых сплавов наибольшей прочностью обладают сплавы систем «Mg – Al», «Mg – Mn», «Mg – Zn», легированные цирконием, кадмием, серебром, редкоземельными металлами.

Алюминий и цинк обладают высокой растворимостью в магнии. В промышленные сплавы вводят до 10% алюминия и до 6% цинка. Прочность увеличивается сначала за счет возрастания концентрации твердого раствора, затем за счет появления вторичных фаз Mg4Al3 и Mg3Zn3Al2.

Цинк и алюминий придают сплавам хорошую технологическую пластичность, что позволяет изготовить из них кованые и штампованные детали сложной формы. Для устранения вредного влияния железа и повышения коррозионной стойкости вводят марганец. Максимальная коррозионная стойкость достигается при добавке около 1,3% Мn.

Кадмий неограниченно растворяется в магнии и не образует собственных фаз. Легируя твёрдый раствор, кадмий повышает прочность и технологическую пластичность сплавов.

Серебро обладает значительной (до 15,5%) растворимостью в магнии. Высокая прочность сплавов системы «Mg – Al», легированных кадмием и серебром объясняется наличием высоколегированного твёрдого раствора и большого количества упрочняющей фазы Mg4Al3.

Магниевые сплавы системы «Mg – Zn» дополнительно легируют цирконием, редкоземельными металлами. Содержание цинка ограничивается 5–6%, при больших значениях в структуре сплава появляется интерметаллидная фаза MgZn2, которая ведет к упрочнению, но снижению пластичности.

Цирконий оказывает рафинирующее и модифицирующее действие. Вступая в соединение с водородом, он уменьшает пористость, измельчает структуру, повышает временное сопротивление и пластичность.

Деформируемые сплавы производят в виде поковок, штамповых заготовок, горячекатаных полос, прутков и профилей. Температурные интервалы технологических процессов обработки давлением магниевых сплавов находятся в пределах: прессование при 300–480 °С, прокатка при
440–225 °С, штамповка в закрытых штампах при 480–280 °С.

Большинство магниевых сплавов термической обработкой не упрочняется. Они применяются в отожженном состоянии или в состоянии после горячей деформации.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)