|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Коррозионная стойкость сталей и сплавовКоррозия –это термин, используемый для обозначения широкого класса видов нежелательного повреждения металла в результате его химического или электрохимического взаимодействия с окружающей средой. Под повреждением понимается образование различных коррозионных дефектов (каверн, язв, питтингов, трещин), утонение толщины стенок, деградация свойств и строения (изменение структуры связано в основном с субструктурой матрицы металла) материала несущих элементов конструкции в процессе эксплуатации и ведущее к потере или снижению её работоспособности. Коррозия многообразна в своём проявлении и ведёт в конечном итоге к разрушению материалов (в первую очередь за счёт локальных видов коррозии) и выходу оборудования из строя. Коррозия является самопроизвольным процессом, вызванным термодинамической неустойчивостью металлов, т. е. стремлению к уменьшению свободной энергии в различных средах при данных внешних условиях. Определить возможность протекания коррозии, как химического или электрохимического процесса, можно по изменению энергии Гиббса (свободной энергии): –ΔG=z·F·E, (12.1) где F - число Фарадея; Е - разность потенциалов φK и φA, характеризующих катодную и анодную реакции, которые определяются уравнениями Нернста: , (12.2) где и – величины стандартных электродных потенциалов деполяризатора (катода) и металла (анода) соответственно; и – активность соответствующих ионов на катоде и аноде. Величины стандартных электродных потенциалов различных металлов позволяют приближенно судить о термодинамической нестабильности металлов: чем более электроотрицателен потенциал металла, тем он активнее отдает свои электроны. Если рассмотреть типичную реакцию окисления для металлов: 2Ме + z2O2 +zН2O → Ме(OН)2, то ΔG (для стандартных условий) для реакций превращения в гидроксиды Мg, Cu, Аu составит, соответственно, – 598 (φ0 = –2,363 В), – 120 (φ0 = 0,520 В) и + 66 КДж/моль (φ0 = 1,692 В). Следовательно, Мg более склонен к окислению, чем Сu, окисление Аu невозможно. Коррозии подвержены все металлические и неметаллические материалы. Из этого черного списка надо исключить принудительное растворение металлов в кислотах c целью получения солей и процессы гальванотехники, радиоактивный распад, эрозию, износ трущихся деталей, шлифование. На скорость и механизм коррозионных процессов большое влияние могут оказывать внешние факторы – температуры, давление среды, напряжение, скорость потока жидкости и газа, наличие трения, кавитации, облучения. По природе гетерогенных процессов взаимодействия окружающей среды с металлами эти процессы можно разделить на два основных типа: · химическая коррозия протекает в сухой атмосфере и чаще всего при повышенных температурах (газовая коррозия). Этот же тип коррозии металлических материалов наблюдается при взаимодействии с неэлектролитами; · электрохимическая коррозия (ЭКХ) – самопроизвольное разрушение металлических материалов вследствие взаимодействия их с электролитически проводящей средой. Газовая коррозия металла протекает при его взаимодействии с газами (О2, N2, СО2, SO2, H2 и др.) при повышенных температурах (закалка, отжиг, ковка, прокатка – технологические процессы, а также выхлопные газы ДВС и дизелей, отвод газов в металлургической и нефтехимической промышленностях). К электрохимической коррозии относятся: · коррозия в электролитах – кислотная, щелочная, солевая, морская и т. п.; · почвенная – ржавление металла в грунте (подземные трубопроводы); · структурная коррозия – разрушение связано с повышенной коррозионной активностью одного из компонентов сплава из-за его структурной неоднородности; · электрокоррозия – разрушение металлов под действием блуждающих токов; · контактная коррозия – интенсивное разрушение металлов, имеющих разные электродные потенциалы («Медь–алюминий»); · щелевая коррозия – усиленное разрушение в зазорах, резьбовых соединениях, между фланцами; · коррозия под напряжением – агрессивная среда в сочетании с внешними нагрузками; · эрозионная коррозия – разрушение металла вследствие одновременного воздействия среды и механического износа; · кавитационная коррозия – разрушение металла при одновременном воздействии удара и агрессивной среды; · фриттинг-коррозия - разрушение металла механическим истирающим воздействием при наличии коррозионной среды. Электрохимическая коррозия развивается в результате работы множества короткозамкнутых гальванических элементов, образующихся вследствие неоднородности металлического материала или внешней среды. Неоднородность поверхности материалов связана с концентрационной неоднородностью сталей и сплавов (ликвацией), границами зерен, присутствием различных включений, анизотропностью свойств отдельных кристаллитов, несплошностью и различным составом поверхностных пленок, неоднородностью деформаций и напряжений в металлах. В зависимости от характера разрушения различают равномерную, протекающую примерно с одинаковой скоростью по всей поверхности метала, помещенного в коррозионную среду, и локальную, охватывающую только некоторые участки поверхности (точечная, щелевая, межкристаллитная, избирательная коррозии – в зависимости от характера разрушаемых участков). По механизму действия все методы борьбы с коррозией можно разделить на 2 основные группы: электрохимические (термическая обработка, легирование, пассивация, ингибирование среды, химико-термическая обработка, диффузионная металлизация, протекторная защиты и т. д.), оказывающие влияние на потенциал металла или его критического значения, и механические (лакокрасочные и пластмассовые покрытия, консервация, эмалирование и т. д.), изолирующие металл от воздействия окружающей среды созданием защитной плёнки и покрытий. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |