АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Композиционные материалы с металлической матрицей

Читайте также:
  1. III. УЧЕБНО – МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО КУРСУ «ИСТОРИЯ ЗАРУБЕЖНОЙ ЛИТЕРАТУРЫ К. XIX – НАЧ. XX В.»
  2. Абразивные материалы
  3. Валы и оси. Классификация. Расчет на прочность. Материалы
  4. Глава 9. Материалы, вещества, изделия как носители криминалистически значимой информации
  5. Заземления корпуса электрооборудования без металлической связи с нейтралью
  6. Идейно-композиционные особенности романа достоевского бедные люди
  7. Иллюстративные материалы
  8. ИНФОРМАЦИОННО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
  9. Композиционные материалы
  10. Композиционные материалы с неметаллической матрицей
  11. Композиционные материалы.

К этому виду композиционных материалов относятся материалы типа САП (спеченная алюминиевая пудра), которые представляют собой алюминий, упрочненный дисперсными частицами оксида алюминия. Алюминиевый порошок получают распылением расплавленного металла с последующим измельчением в шаровых мельницах до размера около 1 мкм в присутствии кислорода. С увеличением длительности помола пудра становится мельче и в ней повышается содержание оксида алюминия. Дальнейшая технология производства изделий и полуфабрикатов из САП включает холодное прессование, предварительное спекание, горячее прессование, прокатку или выдавливание спеченной алюминиевой заготовки в форме готовых изделий, которые можно подвергать дополнительной термической обработке.

Сплавы типа САП применяют в авиационной технике для изготовления деталей с высокой удельной прочностью и коррозионной стойкостью, работающих при температурах до 300–500 °С. Из них изготавливают штоки поршней, лопатки компрессоров, оболочки тепловыделяющих элементов и трубы теплообменников.

Армирование алюминия и его сплавов стальной проволокой повышает их прочность, увеличивает модуль упругости, сопротивление усталости и расширяет температурный интервал службы материала.

Армирование короткими волокнами проводят методами порошковой металлургии, состоящими из прессования с последующей гидроэкструзией или прокаткой заготовок. При армировании непрерывными волокнами композиций типа сэндвич, состоящих из чередующихся слоев алюминиевой фольги и волокон, применяют прокатку, горячее прессование, сварку взрывом, диффузионную сварку.

Весьма перспективным материалом является композиция «алюминий–бериллиевая проволока», в которой реализуются высокие физико-механические свойства бериллиевой арматуры, и в первую очередь, ее низкая плотность и высокая удельная жесткость. Получают композиции с бериллиевой проволокой диффузионной сваркой пакетов из чередующихся слоев бериллиевой проволоки и матричных листов. Из алюминиевых сплавов, армированных стальной и бериллиевой проволоками, изготавливают корпусные детали ракет и топливные баки.

В композиции «алюминий–углеродные волокна»сочетание низкой плотности арматуры и матрицы позволяет создать композиционные материалы с высокой удельной прочностью и жесткостью. Недостатком углеродных волокон является их хрупкость и высокая реакционная способность. Композицию «алюминий–углерод» получают пропиткой углеродных волокон жидким металлом или методами порошковой металлургии. Технологически наиболее просто осуществимо протягивание пучков углеродных волокон через расплав алюминия.

Композит «алюминий–углерод» применяют в конструкциях топливных баков современных истребителей. Благодаря высокой удельной прочности и жесткости материала масса топливных баков уменьшается на
30 %. Этот материал используют также для изготовления лопаток турбин авиационных газотурбинных двигателей.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)