АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Композиционные материалы

Читайте также:
  1. III. УЧЕБНО – МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО КУРСУ «ИСТОРИЯ ЗАРУБЕЖНОЙ ЛИТЕРАТУРЫ К. XIX – НАЧ. XX В.»
  2. Абразивные материалы
  3. Валы и оси. Классификация. Расчет на прочность. Материалы
  4. Воздействие влаги на строительные материалы
  5. Глава 9. Материалы, вещества, изделия как носители криминалистически значимой информации
  6. Идейно-композиционные особенности романа достоевского бедные люди
  7. Иллюстративные материалы
  8. ИНФОРМАЦИОННО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
  9. Композиционные материалы
  10. Композиционные материалы с металлической матрицей
  11. Композиционные материалы с неметаллической матрицей

Композиционными материалами, или композитами, называют материалы, состоящие из сильно различающихся по свойствам, взаимно нерастворимых компонентов.

Сравнительно пластичный компонент, непрерывный во всем объеме композиционного материала, называется матрицей. Более прочный и твердый компонент, прерывистый и разъединенный в объеме композита, называется арматурой.

Матрица связывает композицию и придает ей нужную форму. В зависимости от материала матрицы различают композиционные материалы с металлической матрицей, или металлические композиционные материалы (МКМ), и с неметаллической матрицей: с полимерной – полимерные композиционные материалы (ПКМ), с керамической – керамические композиционные материалы (ККМ).

По типу упрочняющих наполнителей композиционные материалы подразделяют на дисперсно-упрочненные, армированные (волокнистые) и слоистые (рис. 7.6). В дисперсно-упрочненные композиционные материалы искусственно вводят мельчайшие равномерно распределенные тугоплавкие частицы карбидов, оксидов, нитридов и другие, не взаимодействующие с матрицей и не растворяющиеся в ней вплоть до температуры плавления фаз. Чем мельче частицы наполнителя и меньше расстояния между ними, тем прочнее композиционный материал. В дисперсно-упрочненных композиционных материалах матрица является основным несущим элементом.

 

Рис. 7.6. Схема строения композиционных материалов:

а – дисперсно-упрочненные; б – волокнистые; в – слоистые

 

Арматурой в армированных композиционных материалах могут быть волокна различной формы (нити, ленты, сетки разного плетения). Прочность таких композиционных материалов определяется прочностью армирующих волокон, которые воспринимают основную нагрузку. Армирование дает больший прирост прочности, но дисперсное упрочнение технологически легче осуществимо.

Слоистые композиционные материалы набираются из чередующихся слоев волокон и листов матричного материала (типа «сэндвич»). Слои волокон в таком композиционном материале могут иметь различную ориентацию. Возможно поочередное использование слоев матрицы из сплавов с различными механическими свойствами.

Из освоенных промышленностью композиционных материалов ведущее место занимают металлические композиционные материалы на основе алюминия и его сплавов. Использование алюминия в качестве матричного материала обусловлено широким распространением его в технике, низкой плотностью, коррозионной стойкостью, возможностью регулировать механические свойства алюминиевых сплавов термической обработкой и подвергать их различным видам обработки давлением и литья.

1. Композиционные материалы с металлической матрицей.

К этому виду композиционных материалов относятся материалы типа САП (спеченная алюминиевая пудра), которые представляют собой алюминий, упрочненный дисперсными частицами оксида алюминия. Алюминиевый порошок получают распылением расплавленного металла с последующим измельчением в шаровых мельницах до размера около 1 мкм в присутствии кислорода. С увеличением длительности помола пудра становится мельче и в ней повышается содержание оксида алюминия. Дальнейшая технология производства изделий и полуфабрикатов из САП включает холодное прессование, предварительное спекание, горячее прессование, прокатку или выдавливание спеченной алюминиевой заготовки в форме готовых изделий, которые можно подвергать дополнительной термической обработке.

Сплавы типа САП применяют в авиационной технике для изготовления деталей с высокой удельной прочностью и коррозионной стойкостью, работающих при температурах до 300–500 °С. Из них изготавливают штоки поршней, лопатки компрессоров, оболочки тепловыделяющих элементов и трубы теплообменников.

Армирование алюминия и его сплавов стальной проволокой повышает их прочность, увеличивает модуль упругости, сопротивление усталости и расширяет температурный интервал службы материала.

Армирование короткими волокнами проводят методами порошковой металлургии, состоящими из прессования с последующей гидроэкструзией или прокаткой заготовок. При армировании непрерывными волокнами композиций типа сэндвич, состоящих из чередующихся слоев алюминиевой фольги и волокон, применяют прокатку, горячее прессование, сварку взрывом, диффузионную сварку.

Весьма перспективным материалом является композиция «Алюминий – бериллиевая проволока», в которой реализуются высокие физико-механические свойства бериллиевой арматуры, и в первую очередь ее низкая плотность и высокая удельная жесткость. Получают композиции с бериллиевой проволокой диффузионной сваркой пакетов из чередующихся слоев бериллиевой проволоки и матричных листов. Из алюминиевых сплавов, армированных стальной и бериллиевой проволоками, изготавливают корпусные детали ракет и топливные баки.

В композиции «Алюминий – углеродные волокна»сочетание низкой плотности арматуры и матрицы позволяет создать композиционные материалы с высокой удельной прочностью и жесткостью. Недостатком углеродных волокон является их хрупкость и высокая реакционная способность. Композицию «Алюминий – углерод» получают пропиткой углеродных волокон жидким металлом или методами порошковой металлургии. Технологически наиболее просто осуществимо протягивание пучков углеродных волокон через расплав алюминия.

Композит «Алюминий – углерод» применяют в конструкциях топливных баков современных истребителей. Благодаря высокой удельной прочности и жесткости материала масса топливных баков уменьшается на 30 %. Этот материал используют также для изготовления лопаток турбин авиационных газотурбинных двигателей.

2. Композиционные материалы с неметаллической матрицей.

Композиционные материалы с неметаллической матрицей нашли широкое применение в промышленности. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная, полиамидная. Угольные матрицы коксованные или получают из синтетических полимеров, подвергнутых пиролизу (разложение, распад). Матрица связывает композицию, придавая ей форму. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и др.), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.

Свойства композиционных материалов зависят от состава компонентов, их сочетания, количественного соотношения и прочности связи между ними.

Содержание упрочнителя в ориентированных материалах составляет 60–80 об. %, в неориентированных (с дискретными волокнами и нитевидными кристаллами) – 20–30 об. %. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиге и сжатии и сопротивление усталостному разрушению.

По виду упрочнителя композиционные материалы классифицируют на стекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты и органоволокниты.

В слоистых материалах волокна, нити, ленты, пропитанные связующим компонентом, укладываются параллельно друг другу в плоскости укладки. Плоскостные слои собираются в пластины. Свойства получаются анизотропными. Для работы материала в изделии важно учитывать направление действующих нагрузок. Можно создавать материалы как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала.

Применяется укладка упрочнителей из трех, четырех и более нитей. Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях.

Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивление сдвигу по сравнению со слоистыми. Система из четырех нитей строится путем расположения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях. Однако создание четырех направленных материалов сложнее, чем трех направленных.

Наиболее эффективными с точки зрения использования в самых жестких условиях сухого трения являются антифрикционные материалы на основе политетрафторэтилена (ПТФЭ).

Для ПТФЭ характерен достаточно высокий статический коэффициент трения, однако в процессе трения скольжения на поверхности ПТФЭ образуется очень тонкий слой высокоориентированного полимера, способствующий выравниванию статического и динамического коэффициентов трения и плавному движению при скольжении. При изменении направления скольжения наличие ориентированной поверхностной пленки вызывает временное увеличение коэффициента трения, значение которого снова уменьшается по мере переориентации поверхностного слоя. Такое поведение ПТФЭ при трении обусловило его широкое применение в промышленности, где главным образом используют ненаполненный ПТФЭ для производства подшипников. Во многих случаях несмазываемые подшипники должны работать при более высоких скоростях трения. При этом для ненаполненного ПТФЭ характерны высокие значения коэффициента трения и скорости износа. В качестве материалов для несмазываемых подшипников, работающих в таких условиях, широкое применение нашли композиционные материалы, чаще всего на основе ПТФЭ.

Наиболее простым путем уменьшения относительно высокой скорости износа ПТФЭ при сухом трении является введение порошкообразных наполнителей. При этом повышается сопротивление ползучести при сжатии и наблюдается значительное увеличение износостойкости при сухом трении. Введение оптимального количества наполнителя позволяет повысить сопротивление износу до 104 раз.

Полимеры и композиционные материалы на их основе обладают уникальным комплексом физико-механических свойств, благодаря которым они успешно конкурируют с традиционными конструкционными сталями и сплавами, а в ряде случаев без применения полимерных материалов невозможно обеспечить требуемые функциональные характеристики и работоспособность специальных изделий и машин. Высокая технологичность и малая энергоемкость технологий переработки пластмасс в изделия в сочетании с вышеназванными достоинствами ПКМ делают их весьма перспективными материалами для деталей машин различного назначения.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)