АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Коррозионно-стойкие стали

Читайте также:
  1. XX съезд КПСС. Процесс политической реабилитации и десталинизации во второй половине 1950 – начале 1960-х гг. и его значение.
  2. А) преодоление культа личности Сталина и его последствий
  3. Автоматные стали
  4. Автоматные стали.
  5. Азотирование стали
  6. Апогей сталинского тоталитаризма (1945-53 гг.)
  7. Борьба за власть в высшем руководстве СССР после смерти И.В.Сталина (1953-1955гг.)
  8. Быстрорежущие стали
  9. Відповідно до цього під змістом Світового Розуму стали розуміти Христа, Світової
  10. Влияние нагрева и скорости охлаждения углеродистой стали на ее структуру
  11. Вместе мы делаем то, чего не стали бы делать в одиночку
  12. Внутренняя политика. Апогей сталинизма

Коррозия –это термин, используемый для обозначения широкого класса видов нежелательного повреждения металла в результате его химического или электрохимического взаимодействия с окружающей средой.

Под повреждением понимается образование различных коррозионных дефектов (каверн, язв, питтингов, трещин), утонение толщины стенок, деградация свойств и строения (изменение структуры связано в основном с субструктурой матрицы металла) материала несущих элементов конструкции в процессе эксплуатации, что ведет к потере или снижению её работоспособности. Коррозия многообразна в своём проявлении и ведёт в конечном итоге к разрушению материалов (в первую очередь за счёт локальных видов коррозии) и выходу оборудования из строя.

Коррозия является самопроизвольным процессом, вызванным термодинамической неустойчивостью металлов, т. е. стремлением к уменьшению свободной энергии в различных средах при данных внешних условиях.

Определить возможность протекания коррозии, как химического или электрохимического процесса, можно по изменению энергии Гиббса (свободной энергии):

–ΔG = z · F · E,

где F – число Фарадея; Е – разность потенциалов φK и φA, характеризующих катодную и анодную реакции, которые определяются уравнениями Нернста:

,

где и – величины стандартных электродных потенциалов деполяризатора (катода) и металла (анода) соответственно; и – активность соответствующих ионов на катоде и аноде.

Величины стандартных электродных потенциалов различных металлов позволяют приближенно судить о термодинамической нестабильности металлов: чем более электроотрицателен потенциал металла, тем он активнее отдает свои электроны.

Если рассмотреть типичную реакцию окисления для металлов:

2Ме + z2O2 +zН2O → Ме(OН)2,

то ΔG (для стандартных условий) для реакций превращения в гидроксиды Мg, Cu, Аu составит соответственно 598 (φ0 = –2,363 В), 120 (φ0 = 0,520 В) и
+66 кДж/моль (φ0 = 1,692 В). Следовательно, Мg более склонен к окислению, чем Сu, окисление Аu невозможно.

По природе гетерогенных процессов взаимодействия окружающей среды с металлами эти процессы можно разделить на два основных типа:

· химическая коррозия – протекает в сухой атмосфере и чаще всего при повышенных температурах (газовая коррозия). Этот же тип коррозии металлических материалов наблюдается при взаимодействии с неэлектролитами;

· электрохимическая коррозия (ЭКХ) – самопроизвольное разрушение металлических материалов вследствие взаимодействия их с электролитически проводящей средой.

Газовая коррозия металла протекает при его взаимодействии с газами (О2, N2, СО2, SO2, H2 и др.) при повышенных температурах (закалка, отжиг, ковка, прокатка – технологические процессы, а также выхлопные газы ДВС и дизелей, отвод газов в металлургической и нефтехимической промышленностях).

К электрохимической коррозии относятся:

· коррозия в электролитах – кислотная, щелочная, солевая, морская и т. п.;

· почвенная – ржавление металла в грунте (подземные трубопроводы);

· структурная коррозия – разрушение связано с повышенной коррозионной активностью одного из компонентов сплава из-за его структурной неоднородности;

· электрокоррозия – разрушение металлов под действием блуждающих токов;

· контактная коррозия – интенсивное разрушение металлов, имеющих разные электродные потенциалы (например, «Медь – алюминий»);

· щелевая коррозия – усиленное разрушение в зазорах, резьбовых соединениях, между фланцами;

· коррозия под напряжением – агрессивная среда в сочетании с внешними нагрузками;

· эрозионная коррозия – разрушение металла вследствие одновременного воздействия среды и механическо­го износа;

· кавитационная коррозия – разрушение металла при одновременном воздействии удара и агрессивной среды;

· фриттинг-коррозия – разрушение металла механическим истирающим воздействием при наличии коррози­онной среды.

Электрохимическая коррозия развивается в результате работы множества короткозамкнутых гальванических элементов, образующихся вследствие неоднородности металлического материала или внешней среды. Неоднородность поверхности материалов связана с концентрационной неоднородностью сталей и сплавов (ликвацией), границами зерен, присутствием различных включений, анизотропностью свойств отдельных кристаллитов, несплошностью и различным составом поверхностных пленок, неоднородностью деформаций и напряжений в металлах.

В зависимости от характера разрушения различают коррозию равномерную, протекающую примерно с одинаковой скоростью по всей поверхности метала, помещенного в коррозионную среду, и локальную, охватывающую только некоторые участки поверхности (точечная, щелевая, межкристаллитная, избирательная – в зависимости от характера разрушаемых участков).

По механизму действия все методы борьбы с коррозией можно разделить на 2 основные группы: электрохимические (термическая обработка, легирование, пассивация, ингибирование среды, химико-термическая обработка, диффузионная металлизация, протекторная защита и т. д.), оказывающие влияние на потенциал металла или его критическое значение, и механические (лакокрасочные и пластмассовые покрытия, консервация, эмалирование и т. д.), изолирующие металл от воздействия окружающей среды созданием защитной плёнки и покрытий.

Коррозионно-стойкими (нержавеющими) называют металлы и сплавы, в которых процесс коррозии развивается с малой скоростью. Коррозионно-стойкие стали применяют для изготовления деталей машин и оборудования и конструктивных элементов, работающих в разных агрессивных средах (влажная атмосфера, морская вода, кислоты и растворы солей, щелочей, расплавы металлов и др.).

В зависимости от химического состава стали и сплавы разделяют на классы по основному составляющему элементу: хромистые, хромоникелевые, хромомарганцевые и другие, а также сплавы на основе никеля. В зависимости от структуры: ферритные, мартенситные, аустенитные.

Основной легирующий элемент в коррозионных сталях – хром с содержанием от 12–30 %. Железо и хром образуют непрерывный ряд твердых растворов, а также интерметаллид (σ -фаза). Хром с углеродом образует карбид Cr23C6,более устойчивый в сравнении с цементитом, а также карбид Cr7C3. В зависимости от соотношения углерода и хрома можно выделить три группы хромистых сталей – ферритные, не испытывающие γ «α превращение (08Х18Т, 15Х28), полуферритные, испытывающие частичное превращение γ «α (08Х13, 12Х13), и мартенситные (20Х13, 30Х13, 40Х13).

 

 

Рис. 5.4. Изменение электродного потенциала сплавов Fe–Cr
и коррозия сплавов в растворе азотной кислоты

 

Из рисунка 5.4 видно, что в пределах 12–13 % Cr происходит скачкообразное изменение электродного потенциала и сталь из активного состояния переходит в пассивное. Это и послужило поводом для создания группы сталей с 13 % Cr: 07Х13, 12Х13, 20Х13, 30Х13, 40Х13. Все эти стали страдают межкристаллитной коррозией. Это явление связано с образованием карбида Cr3С6. Эти карбиды располагаются на границах зерен. На образование карбидов расходуется много хрома (на 1 % С – 12 % Cr). Это неизбежно приводит к понижению концентрации хрома в зонах, прилегающих к карбидам, и зоны переходят в активное состояние. Именно по этим зонам развивается коррозия. Снижение склонности стали к МКК можно достичь введением сильных карбидообразователей (Ti, Nb, Ta), например, как в стали 07Х17Т.

Мартенситные и мартенситно-ферритные, ферритные стали обладают хорошей коррозионной стойкостью в атмосферных условиях, в слабоагрессивных средах и имеют высокие механические свойства. Ферритные стали применяют для изготовления изделий, работающих в агрессивных средах (например, в растворах азотной кислоты), для изготовления бытовых приборов, в пищевой, легкой промышленности.

В таблице 5.2 приведено основное назначение хромистых сталей.

 

Таблица 5.2


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)