АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Условия работы деформирующих и режущих инструментов, требования к инструментальным материалам

Читайте также:
  1. I. КУРСОВЫЕ РАБОТЫ
  2. I. Общие требования безопасности.
  3. I. ОБЩИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ
  4. I. При каких условиях эта психологическая информация может стать психодиагностической?
  5. I. Психологические условия эффективности боевой подготовки.
  6. II. ДИПЛОМНЫЕ РАБОТЫ
  7. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
  8. II. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КУРСОВОЙ РАБОТЫ
  9. III. Задания для самостоятельной работы по изучаемой теме.
  10. III. Задания для самостоятельной работы по изучаемой теме.
  11. III. Задания для самостоятельной работы по изучаемой теме.
  12. III. Задания для самостоятельной работы по изучаемой теме.

Условия работы деформирующих инструментов (штампов) различаются, прежде всего, тем, нагреваются ли предварительно заготовки или они деформируются в холодном состоянии.

Штамповые инструменты для горячего деформирования по условиям работы можно разделить на три группы: инструменты для прессов, для штамповочных молотов и для высокоскоростного деформирования на скоростных молотах и гидровинтовых прессах. Время деформирования заготовок для всех способов горячей обработки давлением относительно невелико, но для различных способов может существенно отличаться.

Прессовые инструменты работают в условиях наиболее медленного деформирования. Время деформирования при работе на прессах находится в пределах от 0,1 до 0,4 с. Чем длительнее контакт с заготовкой, тем значительнее нагрев штампа.

Инструменты для молотовых штампов работают в условиях ударного нагружения. Время деформирования при штамповке на молотах на порядок меньше, чем при прессовании, и находится в пределах 0,012–0,014 с. При этом плотность теплового потока в инструмент возрастает, но за меньшее время в него поступает меньшее количество тепла. Следовательно, поверхностные слои молотовых штампов нагреваются менее прессовых.

При высокоскоростной штамповке на молотах и гидровинтовых прессах время деформирования еще меньше (0,001–0,006 с). Соответственно, в штамп в этом случае поступает еще меньше тепла, а плотность теплового потока еще выше.

В связи с высокой температурой нагрева деформируемых заготовок на поверхностях штампов возникают достаточно высокие температуры. Из-за кратковременности контакта штампа с заготовкой толщина прогреваемых до высокой температуры (500–550 °С) слоев штампа невелика (около 0,6–
–1,0 мм), причем распределяется температура по этой толщине – неравномерно. При штамповке жаропрочных труднодеформируемых материалов температура поверхностных слоев штампа может достигать 650–750 °С. Наиболее нагретыми оказываются поверхностные слои, основная масса штампа прогревается до меньших температур и более равномерно. После завершения кратковременного периода деформирования неравномерно распределенная температура поверхностных слоев штампа выравнивается и приближается к более низкой средней температуре штампа, обычно находящейся в пределах 300–400 °С.

В связи с характером работы кузнечно-прессового оборудования температура контактных поверхностей штампов циклически изменяется. Колебания температуры вызывают в материале штампа термические напряжения. С течением времени на рабочих поверхностях штампа могут возникать и развиваться термические трещины, являющиеся причиной искажения профиля или разрушения ручьев штампа.

Удельные давления на инструмент зависят от механических свойств материала деформируемой заготовки. При горячем деформировании они обычно находятся в пределах от 300 до 900 МПа. С увеличением температуры предварительного подогрева заготовки удельные давления снижаются, а с увеличением скорости деформирования – возрастают.

Таким образом, для операций горячего деформирования штамповые стали должны:

· обладать удовлетворительной пластической прочностью после термической обработки на твердость HRC 45–50;

· сохранять высокие значения предела текучести и твердости при повышенных температурах;

· обеспечивать длительную эксплуатацию инструментов при высоких контактных температурах 600–700 °С, устойчиво сопротивляться отпуску;

· сопротивляться износу и возникновению трещин вследствие термической усталости.

Условия работы штамповых инструментов для холодного деформирования существенно отличаются от условий, характерных для горячего деформирования. Эти отличия связаны с более высокими механическими характеристиками деформируемых заготовок, вызывающими и более высокие удельные давления, а также с низкой начальной температурой заготовки. Удельные давления при холодном прессовании достигают 2000–2500 МПа.

Температурные условия работы инструментов для холодного деформирования могут изменяться в широком диапазоне. В наибольшей степени разогреваются инструменты для холодной объемной штамповки (например, при прессовании, высадке), а также на некоторых операциях пробивки, вырубки.

Например, при холодном прессовании температура пуансона увеличивается с ростом скорости деформирования и в среднем возрастает с течением времени, постепенно приближаясь к некоторому стационарному значению (рис. 13.1).

В каждом цикле (т. е. при штамповке одной заготовки) в начальный момент соприкосновения с холодной заготовкой температура пуансона снижается, а затем под влиянием выделяющейся теплоты от деформации и трения снова возрастает. С ростом скорости деформирования и толщины разрубаемого материала температура увеличивается, иногда до 450–550 °С.

 

Рис. 13.1. Изменение температуры пуансона при холодном прессовании

 

Таким образом, штамповые стали для холодного деформирования должны обладать:

· теплостойкостью не ниже 400–450 °С;

· способностью противостоять воздействию удельных давлений до 2000–2200 МПа в течение длительного времени;

· высокой износостойкостью (в частности, для вырубных штампов).

Штамповые стали для горячего и холодного деформирования должны также обладать удовлетворительными технологическими свойствами: шлифуемостью, обрабатываемостью резанием, хорошей прокаливаемостью, малой деформируемостью при термической обработке.

Режущие инструменты работают при очень напряженных термомеханических нагрузках, их поверхности находятся в контакте с чистыми, только что образовавшимися поверхностями стружки и детали. Зачастую контакт инструмента со стружкой и обрабатываемой деталью осуществляется в течение достаточно длительного периода, поэтому режущее лезвие инструмента в окрестности режущей кромки и участков контакта инструмента со стружкой и обрабатываемой деталью прогревается достаточно равномерно до высоких температур.

Из-за очень больших скоростей деформации в процессе резания прочностные характеристики и твердость стружки существенно возрастают в сравнении с исходными свойствами обрабатываемого материала, измеренными в статических условиях нагружения. Прочность и твердость инструментального материала под влиянием температуры резко уменьшаются. При резании, например, чистое железо, мягкое в условиях статического нагружения, способно вызвать напряжения, достаточные для деформации и срезания быстрорежущей стали, имеющей в аналогичных условиях нагружения значительно более высокие механические характеристики. В связи с этим к режущим инструментальным материалам предъявляется целый ряд повышенных требований.

Для того, чтобы иметь возможность резать обрабатываемый материал и противостоять абразивному изнашиванию, режущий инструментальный материа­л должен иметь высокую твердость. Чтобы противостоять пластическим деформациям и разрушению, режущий инструментальный материал должен обладать высокими пределами прочности на сжатие и на изгиб.

Режущий инструментальный материал должен сопротивляться разрушению при знакопеременном нагружении, т. е. иметь высокий предел выносливости. Он должен выдерживать ударные нагрузки, т. е. иметь высокую ударную вязкость. Он также должен сопротивляться возникновению и росту трещин, удалению собственных частиц при контактном взаимодействии с обрабатываемым материалом, т. е. быть износостойким. Опыт показывает, что для повышения износостойкости кристаллохимические свойства инструментального материала должны отли­чаться от соответствующих свойств обрабатываемого материала.

Твердость и прочностные характеристики режущих инструментальных материалов должны сохраняться при повышенных температурах. Это свойство инструментального материала обычно называют теплостойкостью. Кроме того, в условиях прерывистого или нестационарного резания режущий инструментальный материал должен быть малочувствительным к циклическим температурным изменениям.

Желательно, чтобы режущий инструментальный материал обладал достаточно высокой теплопроводностью, так как это препятствует возникновению локальных термических напряжений на контактных площадках инструмента и способствует снижению температуры.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)