АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Исчисляемые при этом показатели называются базисными

Читайте также:
  1. II. Основные показатели деятельности лечебно-профилактических учреждений
  2. II. Показатели финансовой устойчивости предприятия.
  3. IV. Показатели доходности (рентабельности).
  4. S 4. Показатели развития мировой экономики
  5. S: Вредными называются вещества, которые при контакте с организмом вызывают
  6. Абсолютные и относительные показатели изменения структуры
  7. Абсолютные и относительные показатели изменения структуры
  8. Абсолютные показатели вариации
  9. Абсолютные, относительные и средние показатели в статистике
  10. Агрегированные показатели бедности
  11. Анализ ФСП основывается главным образом на относительных показателях, так как абсолютные показатели баланса в условиях инфляции сложно привести в сопоставимый вид.
  12. Б) показатели использования коечного фонда

Для расчета показателей на переменной базе каждый последующий уровень сравнивается с предыдущим, т.е. вычисляются делением сравниваемого уровня уi на предыдущий уровень уi-1:

Вычисленные таким образом показатели называются цепными.

Между базисными и цепными относительными показателями динамики имеется взаимосвязь: произведение последовательных цепных относительных показателей динамики равно базисной величине, исчисленной за тот же период, а частное от деления последующего базисного темпа роста на предыдущий равно соответствующему цепному темпу роста.

18. Общая характеристика и методика расчета относительных величин структуры, сравнения и координации. Относительные величины интенсивного и уровня экономического развития.

Относительные показатели структуры (ОПС) характеризуют доли, удельные веса составных элементов в общем итоге. Как правило, в форме процентного содержания.

Обозначим через Y уровень части совокупности, SY — суммарный уровень совокупности

Расчет относительных величин структуры за несколько периодов позволяет выявить структурные сдвиги.

Показатели структуры используют для выявления соотношения части и целого.

Относительные показатели сравнения (наглядности) характеризуют результаты сопоставления одноименных абсолютных величин, относящихся к одному и тому же периоду либо моменту времени, но к различным объектам или территориям.

Относительные показатели координации (ОПК) характеризуют отношений частей данной совокупности к одной из них, принятой за базу сравнения. В качестве базы сравнения как правило, выбирается та часть, которая имеет наибольший удельный вес или является приоритетной с эконо­мической, социальной или какой-либо другой точки зрения. Относительные величины координациипоказывают, во сколько раз одна часть совокупности больше другой, либо сколько единиц одной части приходится на 1, 10, 100, 1000 … единиц другой части.

Относительные показатели интенсивности (ОПИ) характеризуют степень распределения или развития данного явления в той или иной среде. Это отношение абсолютного уровня одного показателя, свойственного изучаемой среде, к другому абсолютному показателю, также присущему данной среде, и, как правило, являющемуся для первого показателя факторным признаком. Напр., показатели рождаемости, смертности, естественного прироста, которые рассчитываются как отношение к среднегодовой численности населения данной территории (на 1000 чел.).

В отличие от относительных показателей, получаемых в результате сопоставления одноименных показателей и представляемых в виде коэффициентов и процентов, относительные показатели интенсивности являются именованными числами. Относительными показателями интенсивности выступают, напр., показатели выработки продукции в единицу рабочего времени, затрат на единицу продукции, трудоемкости, эффективности использования производственных фондов и т.д.

Разновидностью относительных показателей интенсивности являются относительные показатели уровня экономического развития, характеризующие производство продукции в расчете на душу населения и играющие важную роль в оценке развития экономики государства.

 

19. Сущность и значение средних в статистике, их виды.

 

Сущность и значение средних в статистике, их виды.

Средней величиной в статистике называются обобщенная характеристика качественно однородных явлений и процессов по какому-либо варьирующему признаку, которая показывает уровень признака отнесенный к единице совокупности.

Правильное понимание сущности средней состоит в том, что через единичное и случайное выявляется общее и необходимое, выявляется тенденция и закономерность в развитии массовых явлений.

Средняя величина – величина абстрактная, т.к. характеризует значение признака у некоторой обезличенной абстрактной единицы совокупности. Но абстракция есть необходимая ступень любого научного исследования. В средней величине, как во всякой абстракции, осуществляется диалектическое единство отдельного и общего.

Применение средних в статистических исследованиях должно исходить из диалектического понимания категорий общего и индивидуального, массового и единичного.

Средняя отражает то общее, что складывается в каждой отдельной единице совокупности. Благодаря этому средняя получает большое значение для выявления закономерностей, присущих массовым явлениям и не заметным в отдельных единицах совокупности.

Отклонения индивидуального от общей – это проявление процесса развития. В отдельных единичных случаях могут быть заложены элементы нового, прогрессивного, передового. В этом случае именно конкретные факты, взятые на фоне средних величин, характеризуют процесс развития. Характеристики типичных, реальных уровней изучаемых явлений и их изменений во времени и пространстве являются одной из главных задач средних величин.

Так, изменение благосостояния населения страны на определенном этапе экономического развития находит свое отражение в средних показателях заработной платы, доходов семьи в целом и по отдельным социальным группам, уровня потребления продуктов, товаров и услуг.

Следует четко различать средние показатели интенсивности. Среднее из рассмотренного выше – это обобщенная характеристика по одному из изучаемых признаков, отражает то общее, что свойственно всем единицам совокупности. Так, заработную плату получают все рабочие предприятия (из нашего первого примера). А показатель интенсивности отражает отношение объемов двух разных совокупностей. Так, объем национального дохода страны на душу населения не означает, что каждая “душа” создает национальный доход (национальный доход страны создается только в сфере материального производства).

В предыдущих лекциях неоднократно подчеркивалось, что статистика как наука изучает массовые явления по варьирующим (изменяющимся) признакам. На величину индивидуального значения признака у отдельных единиц совокупности оказывают действие некоторые общие причины, а также индивидуальные особенности единицы и индивидуальные условия, в которых она находиться.

Рассмотрим пример. Заработная плата рабочих какого-либо предприятия является количественно варьирующим признаком. За один и тот же период различные рабочие получают, как правило, разную сумму зарплаты. В тоже время речь идет о рабочих одного предприятия, т.е. о качественно однородной совокупности. Какой статистический показатель может обобщено характеризовать уровень зарплаты рабочих данного предприятия? Нетрудно убедиться, что индивидуальная зарплата любого рабочего не годиться для этой цели, т.к. она обычно сильно отличается от зарплаты других рабочих. Не может характеризовать этот уровень и общая сумма зарплаты (ФЗП), начисленная рабочим предприятия за этот период, т.к. она зависит от числа рабочих. Однако можно исключить влияние численности рабочих, уровня их квалификации, условий труда, характера выполняемых работ, различий в профессии и т.д., если общую сумму заработной платы разделить на число рабочих. В результате получим статистических показатель, который и будет обобщенной характеристикой всей совокупности рабочих предприятия по этому признаку. В данном примере этот показатель называется средней заработной платой одного работника.

Другими словами заработная плата изучаемой совокупности рабочих данного предприятия получает обобщенную характеристику в средней величине.

Средняя является результатом абстрагирования от имеющихся у единиц совокупности различий. В средней компенсируются, погашаются случайные отклонения, присущие индивидуальным значениям, отражаются те общие условия, под влиянием которых формировалась вся совокупность. Именно в этом проявляется в самом общем виде закон больших чисел.

Итак, средняя отражает общее и типичное для всей совокупности благодаря взаимопоглащению в ней случайных индивидуальных различий единиц совокупности. Вместе с тем, являясь обобщенной характеристикой совокупности в целом, средняя не подменяет конкретных индивидуальных величин.

Однако для этого совокупность должна состоять из единиц, явлений, фактов одного и того же рода, быть качественно однородной. Только тогда можно говорить об общем для всей совокупности типе. Только в этом случае изменения средних показателей будет отражать общую основную тенденцию, под влиянием которых формируется процесс развития явления в целом. В отдельных индивидуальных единицах совокупности эта тенденция может и не обнаруживаться.

 

Сущность средней заключается в том, что в ней взаимопогашаются случайные отклонения значений признака и учитываются изменения вызванные основным фактором.

Статистическая обработка методом средних величин заключается в замене индивидуальных значений варьирующего признака некоторой уравновешенной средней величиной.

Например, индивидуальная выработка у 5 операционистов коммерческого банка за день составила 136, 140, 154 и 162 операции. Чтобы получить среднее число операций за день, выполненных одним операционистом, необходимо сложить эти индивидуальные показатели и полученную сумму разделить на количество операционистов:

операций.

Как видно из приведенного примера, среднее число операций не совпадает ни с одним из индивидуальных, так как ни один операционист не сделал 150 операций. Но если мы представим себе, что каждый операционист сделал по 150 операций, то их общая сумма не изменится, а будет также равна 750. Таким образом, мы пришли к основному свойству средних величин: сумма индивидуальных значений признака равна сумме средних величин.

 

Это свойство еще раз подчеркивает, что средняя величина является обобщающей характеристикой всей статистической совокупности.

Средние величины широко применяются в различных отраслях знаний. Особо важную роль они играют в экономике и статистике: при анализе, планировании, прогнозировании, при расчете нормативов и при оценке достигнутого уровня. Средняя всегда именованная величина и имеет ту же размерность, что и отдельная единица совокупности.

Важнейшими условиями (принципами) для правильного вычисления и использования средних величин является следующие:

1. В каждом конкретном случае необходимо исходить из качественного содержания осредняемого признака, учитывать взаимосвязь изучаемых признаков и имеющиеся для расчета данные.

2. Индивидуальные значения, из которых вычисляются средние, должны относиться к однородной совокупности, а число их должно быть значительным.

Виды средних величин

Средние величины делятся на два больших класса: степенные средние и структурные средние

Степенные средние:

 Арифметическая

 Гармоническая

 Геометрическая

 Квадратическая

Структурные средние:

 Мода

 Медиана

Выбор формы средней величины зависит от исходной базы расчета средней и от имеющейся экономической информации для ее расчета.

Исходной базой расчета и ориентиром правильности выбора формы средней величины являются экономические соотношения, выражающие смысл средних величин и взаимосвязь между показателями.

Расчет некоторых средних величин:

 Средняя заработная плата 1 работника = Фонд заработной платы / Число работников

 Средняя цена 1 продукции = Стоимость производства / Количество единиц продукции

 Средняя себестоимость 1 изделия = Стоимость производства / Количество единиц продукции

 Средняя урожайность = Валовый сбор / посевная площадь

 Средняя производительность труда = объем продукции, работ, услуг / Отработанное время

 Средняя трудоемкость = отработанное время / объем продукции, работ, услуг

 Средняя фондоемкость = Средняя стоимость основных фондов / объем продукции, работ и услуг

 Средняя фондоотдача = объем продукции, работ и услуг / средняя стоимость основных фондов

 Средняя фондовооруженность = средняя величина основных производственных фондов / среднесписочная численность производственного персонала

 Средний процент брака = (стоимость бракованной продукции / Стоимость всей произведенной продукции) * 100%

СТЕПЕННЫЕ СРЕДНИЕ ВЕЛИЧИНЫ

Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными.

Если вариант встречается один раз, расчеты проводим по средней простой (например зарплата в 3 тыс.руб. встречается только у одного рабочего), а если вариант повторяется неодинаковое число раз, то есть имеет разные частоты (например зарплата в 4 тыс.рублей встречается у пяти работников), то расчет проводим по средней взвешенной.

Формула степенной простой в общем виде

 

где:

 — индивидуальное значение признака -й единицы совокупности

 — показатель степени средней величины

 — число единиц совокупности

Формула степенной средней взвещенной в общем виде

 

где:

 — частота повторения -й варианты.

В зависимости от того, какое значение принимает показатель степени средней величины,

При расчете различных степенных средних по одним и тем же данным значения средних будут неодинаковыми. Чем выше показатель степени (), тем больше величина средней, т.е. действует правило мажорантности средних:

 

 

20. Средняя арифметическая, ее свойства и методика расчета.

Средняя арифметическая, ее свойства и методика расчета.

 

Самым распространенным видом средней является средняя арифметическая.

Средняя арифметическая простая

Простая среднеарифметическая величина представляет собой среднее слагаемое, при определении которого общий объем данного признака в совокупностиданных поровну распределяется между всеми единицами, входящими в данную совокупность. Так, среднегодовая выработка продукции на одного работающего — это такая величина объема продукции, которая приходилась бы на каждого работника, если бы весь объем выпущенной продукции в одинаковой степени распределялся между всеми сотрудниками организации. Среднеарифметическая простая величина исчисляется по формуле:

 

Простая средняя арифметическая — Равна отношению суммы индивидуальных значений признака к количеству признаков в совокупности

 

Пример 1. Бригада из 6 рабочих получает в месяц 3 3,2 3,3 3,5 3,8 3,1 тыс.руб.

Найти среднюю заработную плату

Решение: (3 + 3,2 + 3,3 +3,5 + 3,8 + 3,1) / 6 = 3,32 тыс. руб.

Средняя арифметическая взвешенная

Если объем совокупности данных большой и представляет собой ряд распределения, то исчисляется взвешенная среднеарифметическая величина. Так определяют средневзвешенную цену за единицу продукции: общую стоимость продукции (сумму произведений ее количества на цену единицы продукции) делят на суммарное количество продукции.

Представим это в виде следующей формулы:

 

 — цена за единицу продукции;

 — количество (объем) продукции;

Взвешенная средняя арифметическая — равна отношению (суммы произведений значения признака к частоте повторения данного признака) к (сумме частот всех признаков).Используется, когда варианты исследуемой совокупности встречаются неодинаковое количество раз.

Пример 2. Найти среднюю заработную плату рабочих цеха за месяц

Заработная плата одного рабочего

тыс.руб; X Число рабочих

F

3,2 20

3,3 35

3,4 14

4,0 6

Итого: 75

Средняя заработная плата может быть получена путем деления общей суммы заработной платы на общее число рабочих:

 

Ответ: 3,35 тыс.руб.

Средняя арифметическая для интервального ряда

При расчете средней арифметической для интервального вариационного ряда сначала определяют среднюю для каждого интервала, как полусумму верхней и нижней границ, а затем — среднюю всего ряда. В случае открытых интервалов значение нижнего или верхнего интервала определяется по величине интервалов, примыкающих к ним.

Средние, вычисляемые из интервальных рядов являются приближенными.

Пример 3. Определить средний возраст студентов вечернего отделения.

Возраст в годах

!!х?? Число студентов

Среднее значение интервала

Произведение середины интервала (возраст)

на число студентов

до 20 65 (18 + 20) / 2 =19

18 в данном случае граница нижнего интервала. Вычисляется как 20 — (22-20) 1235

20 — 22 125 (20 + 22) / 2 = 21 2625

22 — 26 190 (22 + 26) / 2 = 24 4560

26 — 30 80 (26 + 30) / 2 = 28 2240

30 и более 40 (30 + 34) / 2 = 32 1280

Итого 500 11940

 

Средние, вычисляемые из интервальных рядов являются приближенными. Степень их приближения зависит от того, в какой мере фактическое распределение единиц совокупности внутри интервала приближается к равномерному.

При расчете средних в качестве весов могут использоваться не только абсолютные, но и относительные величины (частость):

 

Средняя арифметическая обладает целым рядом свойств, которые более полно раскрывают ее сущность и упрощают расчет:

1. Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты, т.е.

 

2.Средняя арифметическая суммы варьирующих величин равна сумме средних арифметических этих величин:

 

3.Алгебраическая сумма отклонений индивидуальных значений признака от средней равна нулю:

 

4.Сумма квадратов отклонений вариантов от средней меньше, чем сумма квадратов отклонений от любой другой произвольной величины, т.е:

 

5. Если все варианты ряда уменьшить или увеличить на одно и то же число, то средняя уменьшится на это же число:

 

6.Если все варианты ряда уменьшить или увеличить в раз, то средняя также уменьшится или увеличится в раз:

 

7.Если все частоты (веса) увеличить или уменьшить в раз, то средняя арифметическая не изменится:

21. Средняя гармоническая, методика ее расчета. Выбор формы средней.

Средняя гармоническая, методика ее расчета. Выбор формы средней.

 

Средняя гармоническая — используется в тех случаях когда известны индивидуальные значения признака и произведение, а частоты неизвестны.

В примере ниже — урожайность известна, — площадь неизвестна (хотя её можно вычислить делением валового сбора зерновых на урожайность), — валовый сбор зерна известен.

Среднегармоническую величину можно определить по следующей формуле:

 

Формула средней гармонической:

 

Пример. Вычислить среднюю урожайность по трем фермерским хозяйствам

Фермерское

хозяйство Урожайность

ц/га (х) Валовый сбор зерновых

Ц (z = x*f)

1 18,2 3640

2 20,4 3060

3 23,5 2350

Итого 9050

 

Ответ: 20,1 ц/га

Гармоническая простая

В тех случаях, когда произведение одинаково или равно 1 (z = 1) для расчета применяют среднюю гармоническую простую, вычисляемую по формуле:

 

Средняя гармоническая простая — показатель, обратный средней арифметической простой, исчисляемый из обратных значений признака.

 

 

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда статистическая информация не содержит частот по осредняемым вариантам совокупности. В качестве весов используются, например, произведения частот на значения признака (т. е. =). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т. д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Формула средней геометрической

 

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики. Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года:,, …,. Очевидно, что объем производства в последнем году определяется начальным его уровнем и последующим наращиванием по годам. Отсюда

.

При анализе временных последовательностей (рядов динамики) единицей совокупности является момент или интервал времени. Это вносит заметное разнообразие в расчет среднего значения. Появляются формулы средних хронологических величин для моментных и интервальных рядов, с равными и неравными интервалами. Средняя величина определяется с учетом основной закономерности изменения показателя во времени.

Можно формализовать порядок выбора вида средней:

– выбор вида средней величины необходимо начинать с построения логической формулы исходя из качественного содержания осредняемогопоказателя. Первоначально нужно выяснить соотношением каких показателей является средняя в данном конкретном случае. Это исходное соотношение необходимо записать словами в виде формулы, которую называют логической формулой средней;

– при выборе формы средней величины необходимо использовать определяющий показатель. Средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым. Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. При выборе определяющего показателя можно руководствоваться несложным правилом: выделить три взаимно связанных показателя, включая и тот, по которому требуется рассчитать среднее значение.

22. Структурные средние, их виды и методика расчета в рядах распределения.

Структурные средние

Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой – не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

,

где XMe – нижняя граница медианного интервала;

hMe – его величина;

(Sum m)/2 – половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);

SMe-1 – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;

mMe – число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

В нашем примере могут быть получены даже три медианных значения – исходя из признаков количества предприятий, объема продукции и общей суммы затрат на производство:

 

Таким образом, у половины предприятий уровень себестоимость единицы продукции превышает 125,19 тыс. руб., половина всего объема продукции производится с уровнем затрат на изделие больше 124,79 тыс. руб. и 50 % общей суммы затрат образуется при уровне себестоимости одного изделия выше 125,07 тыс. руб. Заметим также, что наблюдается некоторая тенденция к росту себестоимости, так как Ме2 = 124,79 тыс. руб., а средний уровень равен 123,15 тыс. руб.

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

,

где ХMo – нижнее значение модального интервала;

mMo – число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);

mMo-1 – то же для интервала, предшествующего модальному;

mMo+1 – то же для интервала, следующего за модальным;

h – величина интервала изменения признака в группах.

Для нашего примера можно рассчитать три модальных значения исходя из признаков числа предприятий, объема продукции и суммы затрат. Во всех трех случаях модальный интервал один и тот же, так как для одного и того же интервала оказываются наибольшими и число предприятий, и объем продукции, и общая сумма затрат на производство:

 

Таким образом, чаще всего встречаются предприятия с уровнем себестоимости 126,75 тыс. руб., чаще всего выпускается продукция с уровнем затрат 126,69 тыс. руб., и чаще всего затраты на производство объясняются уровнем себестоимости в 123,73 тыс. руб.

23. Понятие о вариации, виды показателей вариации, методика расчета.

Понятие о вариации, виды показателей вариации, методика расчета.

 

Показатели вариации

Конкретные условия, в которых находится каждый из изучаемых объектов, а также особенности их собственного развития (социальные, экономические и пр.) выражаются соответствующими числовыми уровнями статистических показателей. Таким образом, вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления.

Для измерения вариации в статистике применяют несколько способов.

Наиболее простым является расчет показателя размаха вариации Н как разницы между максимальным (Xmax) и минимальным (Xmin) наблюдаемыми значениями признака:

H=Xmax - Xmin.

Однако размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается.

Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение Л как среднее арифметическое значение абсолютных отклонений признака от его среднего уровня:

 

При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной:

 

(Напомним, что алгебраическая сумма отклонений от среднего уровня равна нулю.)

Показатель среднего линейного отклонения нашел широкое применение на практике. С его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования. Но, к сожалению, этот показатель усложняет расчеты вероятностного типа, затрудняет применение методов математической статистики. Поэтому в статистических научных исследованиях для измерения вариации чаще всего применяют показательдисперсии.

Дисперсия признака (s2) определяется на основе квадратической степенной средней:

.

Показатель s, равный, называется средним квадратическим отклонением.

В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов.

Если вариация оценивается по небольшому числу наблюдений, взятых из неограниченной генеральной совокупности, то и среднее значение признака определяется с некоторой погрешностью. Расчетная величина дисперсии оказывается смещенной в сторону уменьшения. Для получения несмещенной оценки выборочную дисперсию, полученную по приведенным ранее формулам, надо умножить на величину n / (n - 1). В итоге при малом числе наблюдений (< 30) дисперсию признака рекомендуется вычислять по формуле

.

Обычно уже при n > (15÷20) расхождение смещенной и несмещенной оценок становится несущественным. По этой же причине обычно не учитывают смещенность и в формуле сложения дисперсий.

Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсию среднего значенияможно и на основе всего одного выборочного наблюдения по формуле

,

где n – объем выборки; s2 – дисперсия признака, рассчитанная по данным выборки.

Величина носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.

Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней

.

2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины

.

3. Коэффициент вариации:

 

является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со средним квадратическим отклонением s = 10 лет, «состарилась» еще на 15 лет. Теперь = 30 лет, а среднеквадратическое отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15 × 100 = 66,7%), со временем оказывается, таким образом, вполне однородной (10/30 × 100 = 33,3 %).

24. Виды дисперсий, методика их расчета. Правило сложения дисперсии.

Виды дисперсии и правило их сложения

Изучение вариации (колеблемости, рассеивания) (см. Показатели вариации) признака по всей совокупности в целом, предусматривает изучение вариации для каждой из составляющих ее групп, а также между этими группами. В простейшем случае, когда совокупность разбита на группы по одному фактору, изучение вариации достигается посредством исчисления и анализа трех видов дисперсий: общей, межгрупповой и внутригрупповой.

Общая дисперсия D(x) измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Она равна среднему квадрату отклонений отдельных значений признака (хi) от общей средней величины и может быть вычислена как: 1. простая дисперсия 2. взвешенная дисперсия

 

Межгрупповая дисперсия (факторная) характеризует систематическую вариацию результативного признака, обусловленную влиянием признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений групповых (частных) средних от общей средней:

 

Внутригрупповая дисперсия (частная, остаточная, случайная) отражает случайную вариацию неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений отдельных значений признака внутри группы (хi) от средней арифметической этой группы (xср) (групповой средней) и может быть исчислена как:

1. простая дисперсия 2. взвешенная дисперсия

 

На основании внутригрупповой дисперсии по каждой группе можно определить общую среднюю из внутригрупповых дисперсий:

 

Правило сложения дисперсий

Согласно правилу сложения дисперсий, общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий.

 

 

Пользуясь правилом сложения дисперсий, можно всегда по двум известным дисперсиям определить третью – неизвестную. Чем больше доля межгрупповой дисперсии в общей дисперсии, тем сильнее влияние группировочного признака на изучаемый признак. Поэтому в статистическом анализе широко используется эмпирический коэффициент детерминации - показатель, представляющий собой долю межгрупповой дисперсии в общей дисперсии результативного признака и характеризующий силу влияния группировочного признака на образование общей вариации:

 

При отсутствии связи эмпирический коэффициент детерминации равен нулю, а при функциональной связи –единице. Эмпирическое корреляционное отношение (см. пример) – это корень квадратный из эмпирического коэффициента детерминации:

 

Он показывает тесноту связи между группировочным и результативным признаками. Эмпирическое корреляционное отношение может принимать значения от 0 до 1. Если связь отсутствует, то корреляционное отношение равно нулю, т.е. все групповые средние будут равны между собой, межгрупповой вариации не будет. Значит, группировочный признак никак не влияет на образование общей вариации. Если связь функциональная, то корреляционное отношение будет равно единице. В этом случае дисперсия групповых средних равна общей дисперсии, т.е. внутригрупповой вариации не будет. Это означает, что группировочный признак целиком определяет вариацию изучаемого результативного признака. Чем значение корреляционного отношения ближе к единице, тем теснее, ближе к функциональной зависимости связь между признаками.

Смотри схему дисперсионного анализа: Проверка адекватности регрессионной модели

Примечание: приведены так же формулы расчета коэффициента детерминации и корреляционного отношения, которые используются при анализе рядов динамики.

Пример расчета дисперсии

 

Условие:

Объем дневной выручки в 5 торговых точках составил: 16, 21, 26, 23, X5 (у.е.). Учитывая, что Хср.= 22, найти выборочную дисперсию S2

Решение: Опр. среднюю

 

25. Ряды динамики и их виды. Причины несопоставимости уровней ряда динамики.

Важнейшая задача статистики – изучение социально-экономичес­ких явлений общественной жизни во времени. Изменение этих явлений, т.е. выявление закономерности развития изучаемого явления, статистика исследует путем построения и анализа рядов динамики.

Ряды динамики – это статистические данные, отображающие развитие во времени изучаемого явления. Их также называют хронологическими или временными рядами.

В каждом ряду динамики имеется два основных элемента:

1) показатель времени – t;

2) соответствующие им уровни развития изучаемого явления – y.

В качестве показателей времени в рядах динамики выступают определенные даты (моменты), т.е. отдельные периоды (годы, кварталы, месяцы, пятилетка).

Уровни рядов динамики отображают количественную оценку развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами.

Ряды динамики различаются по следующим признакам:

1. По времени отражения уровней в динамических рядах. В зависимости от характера изучаемого явления уровни рядов динамики могут относиться к определенным датам (моментам) времени и к отдельным периодам. В соответствии с этим ряды динамики подразделяются на моментные и интервальные.

Моментные ряды динамики отображают состояние изучаемых явлений на определенные даты (моменты) времени. Примером моментного ряда динамики, представленного абсолютными величинами, является табл. 5.1.

Таблица 5.1

Информация о количестве туристических фирм
в Приморском крае. Развитие туризма в Приморье

Дата 1.01.1995 1.01.1996 1.01.1997 1.01.1998 1.01.1999
Число туристических фирм          

 

Особенностью моментного ряда динамики является то, что в его уровни входят одни и те же единицы изучаемой совокупности. В моментном ряду есть интервалы – это промежутки между соседними в ряду датами. Величина того или иного конкретного уровня не зависит от продолжительности периода между двумя датами. Так, основная часть туристических фирм в 1995 году, продолжающая работать в течение нескольких лет, отображена в уровнях последующих периодов. Поэтому при суммировании двух уровней моментного ряда может возникнуть повторный счет.

Таким образом, в моментном ряду динамики уровни рядов суммировать нельзя, а разность между показателями характеризует изменение явления за определенный период, в данном случае за год.

С помощью моментных рядов динамики изучают состояние кадров, конкурентную среду, потребительские и другие показатели, отображающие состояние изучаемых явлений на отдельные даты (моменты) времени.

Интервальные ряды динамики отображают итоги развития изучаемых явлений за отдельные интервалы времени.

Примером интервального ряда, представленного абсолютными величинами, могут служить данные о динамике туристических услуга (млрд руб.) за 1995–1999 гг. в табл. 5.2.

Таблица 5.2


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.039 сек.)