АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Параметрических и непараметрических критериев
параметрическиЕ
| НЕпараметрическиЕ
| 1. Позволяют прямо оценить различия в средних, полученных в 2-х выборках (t-критерий Стьюдента)
| Позволяют оценить лишь средние тенденции, например, ответить на вопрос, чаще ли в выборке А встречаются более высокие, а в выборке Б – более низкие значения признака (U-критерий Манна-Уитни и др.)
| 2.Позволяют прямо оценить различия в дисперсиях (F-критерий Фишера)
| Позволяют оценить лишь различия в диапазонах вариативности признака (критерий φ-корелляции Пирсона)
| 3.Позволяют выявить тенденции изменения признака при переходе от условия к условию (дисперсионный однофакторный анализ), но лишь при условии нормального распределения признака
| Позволяют выявить тенденции изменения признака при переходе от условия к условию при любом распределении признака (критерий тенденций S (Джонкира))
| 4.Позволяют оценить взаимодействие 2-х и более факторов в их влиянии на изменения признака (двухфакторный дисперсионный анализ)
| Эта возможность отсутствует
| 5.Экспериментальные данные должны отвечать 2-м, а иногда 3-м условиям:
а) значения признака измерены по интервальной шкале;
б) распределение признака является нормальным;
в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейках комплекса
| Экспериментальные данные могут не отвечать ни одному из этих условий:
а) значения признака могут быть представлены в любой шкале;
б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения необязательно и не нуждается в проверке;
в) требование равенств дисперсий отсутствует
| 6.Математические расчёты довольно сложны
| Математические расчёты по большей части просты и занимают мало времени (за исключением критериев χ2 и φ)
| 7.Если условия, перечисленные в п.5, выполняются, параметрические критерии оказываются несколько более мощными, чем непараметрические
| Если условия, перечисленные в п.5, не выполняются, непараметрические критерии оказываются более мощными, чем параметрические, так как они менее чувствительны к «шумам»
|
Кривая нормального распределения К.Гаусса
|
На рисунке распределения а) и с) симметричны и одномодальны; среднее, медиана и мода одинаковы. Распределение b) не имеет моды, но имеет совпадающие среднее и медиану. В симметричном, мультимодальном распределении среднее и медиана совпадают. Причем могут совпадать с одной модой, как в распределении е ), или не совпадать ни с одной модой, как в распределении d). Когда распределение скошено (асимметрично), среднее является самой удаленной по «хвосту» мерой, затем идет медиана и, наконец, мода (f, g). 1 | 2 | 3 | 4 | 5 | 6 | Поиск по сайту:
|