АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Корреляционный анализ. Корреляционный анализ является одним из методов статистического анализа взаимозависимости нескольких признаков

Читайте также:
  1. II. Основные проблемы, вызовы и риски. SWOT-анализ Республики Карелия
  2. III. Анализ продукта (изделия) на качество
  3. III. Анализ результатов психологического анализа 1 и 2 периодов деятельности привел к следующему пониманию обобщенной структуры состояния психологической готовности.
  4. IX. Дисперсионный анализ
  5. Oанализ со стороны руководства организации.
  6. SWOT- анализ и составление матрицы.
  7. SWOT-анализ
  8. SWOT-анализ
  9. SWOT-анализ
  10. SWOT-анализ в качестве универсального метода анализа.
  11. SWOT-анализ.
  12. VI. АНАЛИЗ СЕГМЕНТА S—Т

 

Корреляционный анализ является одним из методов статистического анализа взаимозависимости нескольких признаков.

Основная задача корреляционного анализа состоит в оценке корреляционной матрицы генеральной совокупности по выборке и определении на основе этой матрицы частных и множественных коэффициентов корреляции и детерминации.

Парный и частный коэффициенты корреляции характеризуют тесноту линейной зависимости между двумя переменными соответственно на фоне действия и при исключении влияния всех остальных показателей, входящих в модель. Они изменяются в пределах от -1 до +1, причем чем ближе коэффициент корреляции к 1, тем сильнее зависимость между переменными. Если коэффициент корреляции больше нуля, то связь положительная, а если меньше нуля — отрицательная.

Множественный коэффициент корреляции характеризует тесноту, линейной связи между одной переменной (результативной) и остальными, входящими в модель; он изменяется в пределах от 0 до 1.

Квадрат множественного коэффициента корреляции называется множественным коэффициентом детерминации. Он характеризует долю дисперсии одной переменной (результативной), обусловленной влиянием всех остальных переменных (аргументов), входящих в модель.

Исходной для анализа является матрица

 

 

размерности п х k, i-я строка которой характеризует i -е наблюдение (объект) по всем k показателям (j = 1, 2,..., k).

В корреляционном анализе матрицу Х рассматривают как выборку объема п из k -мерной генеральной совокупности, подчиняющейся k- мерному нормальному закону распределения.

По выборке определяют оценки параметров генеральной совокупности, а именно: вектор средних , вектор средних квадратических отклонений s и корреляционную матрицу R порядка k:

 


где

(53.1)

(53.2)

xij значение i -го наблюдения j -го фактора,

ril выборочный парный коэффициент корреляции, характеризующий тесноту линейной связи между показателями xj и xl. При этом rjl является оценкой генерального парного коэффициента корреляции.

Матрица R является симметричной (rjl = rlj) и положительно определенной.

Кроме того, находятся точечные оценки частных и множественных коэффициентов корреляции любого порядка. Например, частный коэффициент корреляции (k - 2)-го порядка между переменными х1 и х2 равен

 

(53.3)

 

где Rjl алгебраическое дополнение элемента rjl корреляционной матрицы R. При этом Rjl = (-l) j+l Mjl, где Mjl — минор, т.е. определитель матрицы, получаемой из матрицы R путем вычерчивания j- й строки и l -го столбца.

Множественный коэффициент корреляции (k - 1)-го порядка результативного признака x1 определяется по формуле

 

(53.4)

 

где | R | — определитель матрицы R.

Значимость частных и парных коэффициентов корреляции, т.е. гипотеза H0: ρ = 0, проверяется по t -критерию Стьюдента. Наблюдаемое значение критерия находится по формуле

 

(53.5)

 

где r — соответственно оценка частного или парного коэффициента корреляции ρ; l — порядок частного коэффициента корреляции, т.е. число фиксируемых факторов (для парного коэффициента корреляции l=0).

Напомним, что проверяемый коэффициент корреляции считается значимым, т.е. гипотеза H0: ρ = 0 отвергается с вероятностью ошибки α, если t набл по модулю будет больше, чем значение t кр, определяемое по таблицам t -распределения для заданного α и υ = nl - 2.

Значимость коэффициентов корреляции можно также проверить с помощью таблиц Фишера — Иейтса.

При определении с надежностью у доверительного интервала для значимого парного или частного коэффициента корреляции р используют Z -преобразование Фишера и предварительно устанавливают интервальную оценку для Z:

 

(53.6)

 

где tγ вычисляют по таблице значений интегральной функции Лапласа из условия

 

 

значение Z' определяют по таблице Z -преобразования по найденному значению r. Функция Z' — нечетная, т.е.

 

 

Обратный переход от Z к ρ осуществляют также по таблице Z -преобразования, после использования которой получают интервальную оценку для ρ с надежностью γ:

 

 

Таким образом, с вероятностью γ гарантируется, что генеральный коэффициент корреляции ρ будет находиться в интервале (r min, r max).

Значимость множественного коэффициента корреляции (или его квадрата — коэффициента детерминации) проверяется по F -критерию. Например, для множественного коэффициента корреляции проверка значимости сводится к проверке гипотезы, что генеральный множественный коэффициент корреляции равен нулю, т.е. H0: ρ1/2,…,k = 0, а наблюдаемое значение статистики находится по формуле

 

(53.7)

 

Множественный коэффициент корреляции считается значимым, т.е. имеет место линейная статистическая зависимость между х1 и остальными факторами х2,..., хk, если F набл > F кр, где F кр определяется по таблице F -распределения для заданных α, υ1 = k - 1, υ2 = n - k.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)