|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Мультиколлинеарность
Одним из основных препятствий эффективного применения множественного регрессионного анализа является мультиколлинеарность. Она связана с линейной зависимостью между аргументами х1, х2,..., хk. В результате мультиколлинеарности матрица парных коэффициентов корреляции и матрица (X T X) становятся слабообусловленными, т.е.ихопределители близки к нулю. Это приводит к неустойчивости оценок коэффициентов регрессии (53.12), завышению дисперсии s , оценок этих коэффициентов (53.14), так как в их выражения входит обратная матрица (X T X)-1, получение которой связано с делением на определитель матрицы (Х T Х). Отсюда следуют заниженные значения t (bj). Кроме того, мультиколлинеарность приводит к завышению значения множественного коэффициента корреляции. На практике о наличии мультиколлинеарности обычно судят по матрице парных коэффициентов корреляции. Если один из элементов матрицы R больше 0,8, т.е. | rjl | > 0,8, то считают, что имеет место мультиколлинеарность, и в уравнение регрессии следует включать один из показателей — хj или xl. Чтобы избавиться от этого негативного явления, обычно используют алгоритм пошагового регрессионного анализа или строят уравнение регрессии на главных компонентах.
Пример. Построение регрессионного уравнения
Согласно данным двадцати (п = 20) сельскохозяйственных районов, требуется построить регрессионную модель урожайности на основе следующих показателей: у — урожайность зерновых культур (ц/га); x1 — число колесных тракторов (приведенной мощности) на 100 га; х2 — число зерноуборочных комбайнов на 100 га; х3 — число орудий поверхностной обработки почвы на 100га; x4 — количество удобрений, расходуемых на гектар; х5 — количество химических средств оздоровления растений, расходуемых на гектар. Исходные данные для анализа приведены в табл. 53.1.
Таблица 53.1 Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |